
                                                                                                                                    

A class of dissipative evolutions with applications in thermodynamics of 
fermion systems 
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We construct explicitly a special class of semigroups of completely positive maps on the CAR 
algebra and give an application on a model of thermal contact. 

I. INTRODUCTION 

Recently, semigroups of completely positive maps on 
C *-algebras have been introduced in mathematical physics. 
The main physical motivation to study such objects comes 
from non equilibrium statistical mechanics. Groups of auto­
morphisms have been used with success to describe dyna­
mics of reversible processes. They give also a good descrip­
tion of return to equilibrium for weakly interacting systems 
close to equilibrium. 

In opposite, one cannot hope to use groups of automor­
phisms to describe irreversible processes arising from sys­
tems far from equilibrium. The use of semigroups of com­
pletely positive maps is a simple theoretical alternative in 
this case, which conserves the deterministic properties of 
groups in only one time direction and involves nonhomo­
morphic transformations of the algebras. 

The general structure of such semigroups is only known 
under some strong continuity conditions. IOn the other hand 
several constructions are available in particular cases. 2-5 

This paper is organized as follows. In Sec. II, we intro­
duce semigroups of quasi-free completely positive maps on 
Clifford algebra and describe their structure. In Sec. III, we 
consider more specifically a one-dimensional continuous 
system of fermions and study a special class of quasi-free 
semigroups, namely those which transform in itself the class 
of quasi-free states which are stable and invariant under the 
free evolution. We give explicit constructions in Proposition 
III. 5. 

Finally, Sec. IV is devoted to an application on a model 
of thermal contact. We exhibit a quasi-free semigroup which 
asymptotically transforms an initial state describing two 
subsystems at different temperatures to the expected equilib­
rium state for the total system. 

II. COMPLETELY POSITIVE QUASI-FREE SEMIGROUPS 
ON CLIFFORD ALGEBRA 

Let (H, s(.,.» be a real Hilbert space; its associated Clif­
ford algebra '!1(H,s) is generated by I and the self-adjoint, 
real linear elements B (¢), ¢EH, satisfying 

[B (¢,)B (qJ) I = 2s(¢,qJ )1. 
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A linear map cP : '!1(H,s)--+'!1(H,s) is called completely 
positive (CP) if, for all nEN, cP® 1M " is positive on 
'!1(H,s) ® Mn, where Mn is the algebra of n X n complex 
matrices. 

In the following, we shall deal with CP maps of a special 
structure, namely the quasi-free completely positive maps. 

A linear mappingp from the algebra of finite, complex, 
linear combinations of I and the monomials B (¢t ) ... B (¢n) 
with ¢iEH, n = 1,2, ... , into C is called a quasi-free functional 
on '!1(H,s) if it satisfies: 

(i) p(B (¢t ) .. ·B (¢2n + t» = 0, 

(ii) p(B (¢ t ) .. ·B (¢2n» 

= L ( - lY(P)p(B (¢i,)B (¢i,» .. ·p(B (¢i,,, )B (¢i,) 
P 

where the sum is taken over all partitions P of 11,2, ... ,2n) 
into sets [iu_ t, i2k ), k = I, ... ,n, such that i2k t < i2k and it 
< i3 < ... < i2n _ t and where X (P) is the parity of the permu­
tation 11,2, ... ,2n) --+!it ,i2 , .. ·,i2n ). 

Theorem lI.1: Let TE'B(H), P be a quasi-free functional 
on ~[(H,s) and cP be defined by: 

cP (B (¢t ) .. ·B (¢,J) = L ( - I) r(P)B (T¢i,) .. ·B (T¢i) 
p 

Xp(B (¢i, J .. B (¢i)' (I) 

where the summation is taken over all the partitions P of 
11, ... ,n) into two sets 1 it , ... ,ik ), 1 ik + t , ... ,in ) satisfying it 
< i2 < ... < ik , ik + t < ... < in (a monomial of order zero is tak­
en to be I) and where X (P) is the parity of the permutation 
[I, ... ,n )--+1 it , .. ·,in)· 

Then cP extends to a completely positive unity preserv­
ing mapping on '!1(H,s) if and only if 

(i) T is a contraction on (H,s); 
(ii) p extends to a quasi-free state on '!1(H,sr), where 

ST(.,') = s(.,.) - s(T.,T.). 
Proof The sufficiency of the conditions (i) and (ii) fol­

lows from a straightforward generalization of Ref. 4. 
We now prove the necessity. Asp is quasi-free one has 

for ¢EH 

s(¢,¢)2p (l) = p(B (¢)B (¢)B (¢)B (¢» 

= p(B (¢)B (¢»p(B (¢)B (¢» 

and so 
= s(¢,¢)2p(I)2, 

pel) = 1. 

As V¢EH, 

cP (B (¢» = B (T¢)p(l) = B (T¢), 
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and as <P is certainly 2-positive, one has: 

s(Tt/I,Tt/I)l = B (Tt/I)B (Tt/I) 

= <P (B (t/I»<P (B (t/I» 

<<P (B (t/I)B (t/I» 

= s(t/I,t/I)<P (1) 

= s(t/I,t/I)l. 

Therefore T is a contraction. 
Finally for t/ll , t/l2 E Hand AEe one finds, using: 

<P [B(t/lI) +AB(t/l2)]<P [B(t/lI) +AB(t/l2)]* 

<<P [(B (t/lI) + AB (t/l2»(B (t/lI) + in (t/l2»]' 

that 

I A 1
2sT(t/l2 ,t/l2) + 2 Rei i p(B (t/lI)B (t/l2» J 

+ ST(t/l1 ,t/ll ):;;'0. 

As T is a contraction on (H,s) this implies that 

Ip(B (t/lI)B (t/l2» I 2 <ST(t/l2 ,t/l2)ST(t/l1 ,t/lI)' (2) 

Using the self-adjointness ofp and (2) one now immedi­
ately obtains 

p(B (t/lI)B (t/l2» = ST(t/l1 ,t/l2) + isT(At/l1 ,t/l2)' 

where AE~(H,ST) satisfies 

ST(At/l1 ,t/l2) = - ST(t/l1 ,At/l2) 

and 
IIA lis, < 1. 

It follows thatp extends to a quasi-free state on IJ1(H,sT)' • 
A completely positive unity preserving map on IJ1(H,s) 

that satisfies the conditions of Theorem 11.1 will be called 
quasi-free and we use the short-hand notation CPQF to des­
ignate it. In order to define a CPQF map it is sufficient to 
give its action on monomials B (t/lI)B ("'2) of second degree. 

Usually, one starts from a complex Hilbert space 
(cW', (,1,», Its underlying real Hilbert space (H ,s), with 
s(·,·) = Re(.I·), coincides with cW' as a real vector space. In 
this case, creation and annihilation operators are defined by 

a*(t/I) = ![B(t/I) - iB(it/l)], 

a(t/I) = ![B(t/I) + iB(it/l)], 
and satisfy the usual CAR. The gauge automorphisms r () are 
then given by 

roa*(t/I) = ei()a*(t/I), BE[0,21T]. 

We are especially interested in strongly continuous se­
migroups of CPQF maps which commute with the gauge 
automorphisms. 

One immediately checks that such a semigroup <P, is 
defined by 

<P, : a*(t/I)a(<p )-a*(T, t/I)a(T,<p) + (Q,<p I t/I), (3) 

where I T, I tEIR + l is a strongly continuous contraction semi­
group on cW' and I Q, ItEIR + l is a weakly continuous family 
of bounded operators on cW' satisfying 

O<Q,<I- T~T" t:;;.O 

and 

Q" +', = Q" + T~Q" T", t l , t2 :;;.0. 
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Let (J) A be a gauge invariant quasi-free state defined by6 

(J)A (a*(t/I)a(<p» = (<p IAt/I), 

and I <P, ItEIR + l as in Eq. (3), then (J)A 0 <P, is again a gauge 
invariant quasi-free state and 

III. CPQF SEMIGROUPS ASSOCIATED TO FREE 
EVOLUTIONS 

(4) 

In this section we explicitly construct gauge invariant 
CPQF semigroups. To keep the situation as simple as possi­
ble, we will treat a one dimensional continuous system of free 
fermions. From now on, IJ1 is the Clifford algebra built on 
2"2(IR,dx) = cW'. 

The free evolution on ~r is described by a group 
I a, ItEIR l of automorphisms given by 

a,a*(t/I) = a*(e - i'LJ.t/I), t/IE cW'. 

We pass immediately to the momentum representation. 
The free evolution is then given by 

a*( t/I)-a*(Mexp(i'k ') t/I), 

where M F denotes the multiplication operator on cW' with 
the function k--+F (k ). 

A gauge invariant quasi-free state which is invariant 
and stable for the free evolution is determined by a multipli­
cation operator Ma(k) on cW' with O<a(k )< 1 and 
a(k) = a( - k). 

We now write cW' = cW' ." ffi cW' + with 

cW' ± = I t/IE cW' I Suppt/l C IR ± J, 
and define the inversion operator 

(pt/l)(k) = t/I( - k). (5) 

So, the gauge invariant quasi-free states which are invariant 
and stable for the free evolution are in one-to-one correspon­
dence with the multiplication operators on cW'+ , nonnega­
tive and bounded by 1. 

We wish now to study the subclass of gauge invariant 
CPQF semi groups which are essentially characterized by 
the requirement that they conserve invariance and stability 
properties of states with respect to the free evolution. As long 
as only gauge invariant quasi-free states are concerned the 
previous remarks allow us to restrict our study to semi­
groups on 1J1(cW' I ). Then, using in the momentum represen­
tation the same notations as in Eq. 3, it is sufficient, consider­
ing Eq. 4, to impose that cP, (c4f) C Ji, where 

cP, (A ) = T ~ AT, + Q" AE~(cW' + ), 

and J( is the Von Neuman algebra of multiplication opera­
tors on cW' + . 

For clarity, we summarize the previous notions in the 
following definition: 

Definition III. 1 : A free semi group of CPQF maps on 
~r(cW' + ) is a semigroup of maps <P" tEIR + , defined by 

<P, : a*(<p )a(t/I)-a*(T,<p )a(T, t/I) + (Q, t/I l<p ) 
with the following properties: 

(i) tEIR + -T, is a strongly continuous semigroup of 
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contractions on JY' + , 
(ii) tER + ~Q, is weakly continuous and O..;;Q, 

..;;1 - T~T" 

(iii) Q" + " = Q" + T~Q" T", t l , t2 ;;;.0, 
(iv) <P,(1) C 1. 
It follows immediately from (iii) that Q,E 1 and 

T ~ 1 T, C 1. As T, is a contraction semigroup T ~ T, is 
decreasing and bounded by 1 from above, s-lim,~"" T~T, 
= R"" exists and belongs to 1. It follows also from (ii) and 

(iii) that Q, is increasing and bounded by 1, therefore also 
Q"" = s-lim, ___ "" Q, exists and belongs to 1. Two essentially 
different cases can be distinguished: 

(1) R 00 = 0, then T, converges strongly to zero and one 
sees immediately from (1) that for any state w, W 0 4>, con­
verges in the w*-topology as t----+ 00 to one and the same gauge 
invariant quasi-free state defined by Q 00 • Explicit examples 
of this type of situation can be found in Ref. 2. 

(2) R 00 =1= O. In this case there exists at least a one param­
eter family of gauge invariant quasi-free states, invariant un­
der 4>,; namely those defined by the operators Q 00 + AR 00 , 

0..;;..1...;; 1. We now investigate this case in more detail. 
Lemma III.2: With the same notations as above: Let 

I T, ItER + } be a strongly continuous semigroup of contrac­
tions on JY' + such that 

(i) T~1T, C 1, t;;;.O, 
(ii) T~MFflT, = M F., where O=l=FoE2'~ (R +, dk), 

and where M F. is the multiplication operator by Fo on JY' + . 
There extsts then a strongly continuous semigroup 

I V, ItER + } of isometries on JY' + such that for t;;;.O 
(i) V~1V, C 1, 
(ii) MFo(lIZ) T, = V,MFu(l!2) . 
Proof: As T~MF,.T, = MFa one has for the polar de­

composition of M F,,(I/2) T, : 

M Fo(l!2) T, = VIM Fo(I!2) , 

where V, maps IMFu(llz)JY'+} into itself. Extending V, by 

the identity operator on 1M Fu(lIZ)JY' + } lone obtains a col­
lection of partial isometries, still denoted by V" that satisfy: 

M Fo(I!2) T, = VIM Fo(l/2) , 

Vlf/J = f/J, f/JEIMFu(l!2)JY'+ Jl. (6) 

Writing 

MFo = T~MF"T, = MFu(lIZ) V~V,MFu(l/2) , 

and using Eq. (6) one obtains V~ V, = 1, t;;;.O. So V, is an 
isometry. As 

Ve, + "MFo(l/2) = M Fo(I12)T" + e, = M Fo(l12)Te,Te, 

= V"MFo(1/2) T" = VI, V"MFo(l/2)' 

t l , t2 ;;;'0, 

one finds, using Eq. (6) again, that I VI ItER + } is a semi­
group. In order to show that it is strongly continuous it is 
sufficient to observe that 

II (VI - V,)MFo(l!2)f/J II = IIMFo(I12)(T, - T,)f/J II 

..;;II(T, - Te)f/J II, t, tl ;;;.0, f/JE cW"+ 

and to use the strong continuity of I Te ItE R + J. 
Finally we show that V ~ 1 V, C 1. As 1 is maximal 
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Abelian M F. E 1 and using the construction of V, it is 
enough ~o show that for FI , F2 E2' oc (R + ,dk ) and t;;;'O, 

[V~MFI V"MF, lI M Fu(llz)JY'+ J = 0. 

Let t/JE JY' + , then 

(M Fa(l/2) t/J I [V~ M F, Ve ,M F, 1M Fo(l12) t/J) 

= (t/J I MFu(l/Z) V~MF, VeM F,MFu(l12)t/J) 

- (t/JIMFo(1I2)MF, V~MFI VeM Fo(l!2)t/J) 

= (t/JI T~MFoMF, TeMF,t/J) 

- (t/JIMF,T~MFoMFI T,t/J) = 0. • 

Our aim was to construct explicitly the free semigroups 
of CPQF maps as characterized in the Definition III. 1. 
However, as we cannot solve the equations in Definition 
III. 1 in their full generality, we will supplement them with a 
regularity condition introduced in the following lemma. 

Lemma III. 3: Let I Ve ItER + J be a strongly continuous 
semigroup ofisometries on JY'+ which satisfy V~1Ve 
C 1. The following conditions are equivalent: 

(i) 3t> ° such that MF V, = Ve V~MF V" MFE 1, 
(ii) 31>0 such that V, V~E 1. Ifone of these condi­

tions is satisfied then both hold for all t;;;.O, and M F 

----+V~MF Ve is a semi group of *-homomorphisms of 1. 
Proof: (i)----+(ii) Consider MF in 1. Then 

MFV,V~ = V,V~MFV,v~ = Vel V,v~M~V,J* 

= Ve IM~Ve 1* = V,v~MF' 

As 1 is maximal Abelian, VI V~E 1. 
(ii~(i) 

V,V~MFVe =MFVeV~Ve =MFV,. 

The last statements of the lemma follow immediately. • 
Proposition III.4: Let I V, ItER + J satisfy the conditions 

of Lemma III.3, then there exists a family I u, ItER + 1 of 
absolutely continuous functions kER + ----+u,(k )ER + , and a 
family I (J, ItER + 1 of real-valued measurable functions 
kER + ----+(Je(k )ER such that: 

(i) uo(k) = k and t----+ue(k) continuous k-a.e., 
(ii) (Jo (k ) = 0 and t----+(J, (k ) continuous k-a.e., 
(iii) u, +, (k) = u, (u, (k », tl ,tz ;;;'0, 
(iv) (J,: + ,:(k) = (J,:(k) + (Jr, (u" (k », t 1 ,tz ;;;.0, 
(v) (V~f/J )(k) = eilJ,(k) lu;(k) 1112f/J (u,(k », f/JEJY'+. 
Proof: Consider the strongly continuous group of un i-

taries I Me'" ISERJ on cW"+. By Lemma IIU, V~Me'" V, is 
unitary. Hence I V~ Me'" V, I SER 1 is also a strongly continu­
ous group of unit aries in 1. By Stone's theorem 

V~Mei" V, = MexP[isu,(k) I' 

where k----+u, (k ) is a measurable function from R + into R + . 

It follows that: 

V~MFV, =MFou" FE2'''''(R+ ,dk). 

By LemmaIII.3, V,V~E1. Wenote.::1, the support of 
V, V~. Consider now a t/JE JY'+ such that SuppV,t/J = .::1,; 
then, as V~V, = 1, Suppt/J = R +. One has for F 
E2' ""(R + ,dk) 

V:'M1F1 , Vlt/J = M 1FO u,I' t/J, 
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so 

f IF(k )IZI(V,¢,)(k) 12 dk = f IF(u,(k)) 121¢'(k) 12 dk. 

It follows that k---+u, (k) is absolutely continuous. 
We take now tfE ,5f" + . Since 

V~'P = V~V, V~'P, 

one can suppose without restriction that SuPw C A" in 
order to prove (v). We have 

V~M!FI' V, V~'P = M IFO u,I' V~'P = V~M FI''P· 

Taking the scalar product with V~'P one finds: 

L IF(k)1 2 1'P(k)1 2 dk= f IF(u,(k))1 21(Vi'P)(k)1
2

dk. 

Hence, if 

f IF(u,(k»121(V~'P)(k)12dk=0, 'rJFE1 OO (R+,dk), 

'P(k)=O on A" 

and 

V~'P = O. 

Consequently 

f IF(uJk» 121(V~'P )(k) 12 dk 

= f IF(u,(k»1
2

Iu;(k)II'P(u,(k»1
2

dk, 

leads to 

I(V~'P)(k)1 = lu;(k)1
1/2

1'P(u,(k»I, 

and (v) follows. 
The other statements of the proposition now follow 

easily: 
(iii) and (iv) are consequence of semi group properties of 

I V/ ItER + 1 
(i) and (ii) express the initial conditions and the conse-

quences of strong continuity of t---+ V, . • 
We are now in position to construct explicitly a class of 

free semigroup of CPQF maps. 
Let v :R + ---+R be a differentiable, strictly monotone in­

creasing function such that v(R + ) + R + C v(R + ). Putting 
in Proposition I1I.4 u,(k) = v I(v(k) + t) and 8,(k) = 0 
one finds by (v) of Proposition III.4 a strongly continuous 
semigroup ofisometries ! V~ltER + 1 of JY7+. Let now 
h : R---+C be a measurable function such that Reh>O and 
such that 

( ldk) ) 
Fr.}(k) = exp - 2 ds Reh (s) E:Z~(R + ,dk). 

u(O) 

The equation T~ M f ;,(1/2) = MF,,(IIZ) V~ of Lemma III. 2 then 
admits as unique solution a strongly continuous semigroup 
! T ~ ItER + 1 of contractions on ,5f" -+ satisfying the condi­
tions of Lemma 111.2. Finally let g : R ~ ---+R j be a bounded 
measurable function such that g<;2Re(h 0 v), and put 

224 

Q, = (' ds T ~ Mg T" 
)0 
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then I T, ItER t 1 and I Q, ItER + I satisfy Definition III. I. 
This situation can be generalized as follows: 

Proposition III.5: Suppose that 
(a) v : R + ---+R is differentiable, strictly monotone in-

creasing and satisfies v(R + ) + R + C v(R + ); 

(b) h : R---+C is measurable and Reh>O; 
(c) g : R -t ---+R + is measurable and g<;2 Re(h 0 v). 
Then 
(i) I T, ItER I 1 and I Q, ItER + l satisfy Definition 111.1, 

where 

(T~¢')(k ) 

= I d~~ I (v(k) + t ) )1121 :~ (k) 11/2 

xexp [ - Lh(V(k)+S)dS]¢'(V I(v(k)+t», 

Q,=MK " 

with 

K,(k)= Ldsexp[ -2 fReh(V(k)+r)dr] 

xg(v I (v(k) + s», kER f- • 

(ii) The semigroup I T, ItER' I tends strongly to zero iff 

fX Reh (s) ds = + 00. 
){I(O) 

(iii) M F' with F absolutely continuous, is invariant un­
der t J, ItER' I iff it satisfies the equation: 

then 

F' = v'[2F Re(h 0 v) - g). 

(iv) If 

lim F(k) = 0, FE1"(R t, dk), 
k 

s-lim T~ MF T, = O. 
t---+oo 

Proof (i) is straightforward to check. Note that K, 
E.':!" Y (R I ,dk) as: 

O<,K, (k)<; f'ds 2 Reh (v(k) + s) 
)0 

xexp[ -2 fReh(V(k)+r)dr] 

<;1 - exp [ - 2 L Reh (v(k) + r) dr]. 

This inequality yields also Q, <; 1 - TiT, 
(ii) Define a unitary operator 

V: y2(R ' , ds)---+.YZ( [v(O), 00 ], ds), 

by 

(V¢')(s) = I d:
s 

' (s) )'/2 ¢,(v '(s», 

SE[ v(O), 00 ], ¢'s'JI I, 

and the strongly continuous semigroup I S, ItER + I of (right) 
shift operators on yZ( [v(O), 00 1, ds), 
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(S,I/1)(s) = 0, s < v(o) + t, 
= I/J(s - t), s;>v(o) + t. 

One has then 

T, = V*MH,S, V, (7) 

where MH is the multiplication operator on 

2"2([ v(O), 00 ],ds) by 

H,(s) = exp [ - .c h (s - t + r) dr]' 

Therefore the semigroup [T, ItER + I converges strongly to 
zero on JY'+ iff [MH, S, ItER + I converges strongly to zero 
on 2"2( [v(O), 00 ],ds) and this is the case iff: 

foo Reh (s) ds = + 00, 

J<>(O) 

(iii) is immediate; 
(iv) with the same notations as in part (ii) of the proof, 

VM F V * is the multiplication operator on 2"2( [v(O), 00 ],ds) 
by s-+F (v - I(S». As lims_ oo F (v - I(S» = ° one finds 

s-lim S~M~,MFo v .MH,S, = 0, 
(-.-+00 

one 2"2([V(0), 00 1,ds), and so, using Eq. 7, 

s-lim T~MFT, = 0, on JY'+. • 1- .... 00 

To put in evidence the physical content of Proposition 
111.5, we give immediately a possibility of application in a 
simple but typical situation. 

Consider a system which is prepared in a translation 
invariant quasi-free state determined by a function 
k-+Fo (k) which vanishes at infinity. In order to let it evolve 
towards the translation invariant quasi-free state deter­
mined by k-+F(k), whereF(k ) also vanishes at infinity, one 
can try to use a semigroup ! <P, ItER + I ofCPQF maps. One 
gets the desired result if it is possible to construct functions v, 
hand g satisfying (a), (b), and (c) of Proposition 111.5 and 
such that 

F' = v'(2FRe(h 0 v) -g) [Prop. 111.5 (iii)]. 

Then, by invariance of M F under ci>, and by Proposition 
111.5 (iv), one gets 

MF = s-lim ci>,(MF) = s-lim (T~MFT, + Q,) = Q", , 
t_oo 1--+00 

and so 

s-lim ci>,(MF'> = s-lim (T~MFoT, + Q,) 
I .. :x> (--+00 

= s-lim Q, 

=Q",=MF • 

IV. APPLICATION TO A MODEL OF THERMAL 
CONTACT 

We explicitly construct in this section a free semigroup 
of CPQF maps which describes the physical effect of tem­
perature equalization between two systems of fermions. 

We start from a one-dimensional free fermion system 
which is initially far from the thermodynamical equilibrium: 
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At the left of the origin, it is in equilibrium at the inverse 
temperature and chemical potential (/31 #1) and at the right 
at the inverse temperature and chemical potential (/32 ,!1-2)' 
We look for a dissipative evolution under which this initial 
state tends asymptotically to the equilibrium state at the in­
verse temperature and chemical potential (/33 #3)' deter­
mined from (/31 ,!1-1 ) and (/32 ,!1-2) using standard thermodyn­
amical considerations. 

We introduce some notation: ~ ± is the Clifford algebra 
built on 2"2(R ± ,dx); if kER-+F(k )E[O,l] is a measurable 
function, W F will denote the gauge and translation invariant 
quasi-free state on ~ = ~(2"2(R,dx» determined by the 2-
point function: 

wF (a*(ip)a(I/1» = i dk ¢(k)F(k)~(k). 
If w is a state on ~, w ± denotes the restriction of w to ~ ± . 

We note Fp the Fermi-Dirac distribution function at in-
.1' 

verse temperature /3 and chemical potential!1-: 

1 
Fp. I' (k ) = , kER. 

eP(k
2 

-1') + I 
The initial state of the system is taken as the product state a 
la Powers': 

and our aim is to calculate 

lim [(w~., .• ® W~2'.) 0 <P, ](a*(ip )a(I/1», ip,~, 
'-00 
for the as simple as possible semigroup I <PI ItER + } which 
leaves WE: invariant and which is constructed with the 

113' .~3 

help of Proposition 111.5. 
Thus, we consider in momentum representation the ac­

tion of the semigroup [ci> I ItER + ). We first describe it on 
~(2"2(R + , dk» and then extend it by inversion with the 
help of the operator P defined in Eq. (5). 

We propose: 

v(k) = k, kER + , 

F' (k) 
h (k) = -! P,. 1', ,kER + , 

I-F{3,.I',(k) 

F~"I',(k ) 
g(k) = - = 2h (k ), kER + . 

1 - F{3,.'I, (k ) 

One easily verifies that the conditions (a), (b), and (c) of 
Proposition 111.5 are satisfied, and that ME: is invariant 

t!3' ..--) 

under [ci>, IteR + I [(part iii) of the proposition]. 
The operators T, and Q, on 2"2(R + ,dk ) are then given 

by: 

(T, <p +)(k) 

f
a, 

= (1 -F{3,.I',(k - t) )1/2q; + (k _ t), 

1 - F{3"I',(k) 
k>t ' 

- F{3 (k) - F{3 (k + t) _ 
(Q + )(k) = ,.1', ,.I', ip + (k). 

,ip I-F (k+t) 
8J"J.i.3 
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Proposition IV.I: With the same notations as above 

Proof As the free semigroups ofCPQF maps transform 
gauge invariant quasi-free states in gauge invariant quasi­
free states, it is enough to compute, for all q?EJ('2(R,dx) 

}i~ (wi", '" ® w/.1",.)(<1>,(a*(q?)a(q?»). 

This 2-point function can be written as a sum of two 
terms; the first one contains the action of the operators T, 
and the second one pertains to the operators Q, : 

(WI ® wi )(<1>, (a*(q? )a(q?») 
1111'1 111"'1 

= II (t) + 12 (t ), 

II(t)= 4~r+: dP[ F(3",,'(P») roo dxe-
ipx 

x f+yOO dkeikX(T,~)(k»)2 +F(3"",(p) 

X I I h dxe ipx f+%x dkeik'(T,~)(k)n, 

I z (t) = f +%00 dk ~ (k) (Q, ~ )(k). 

In these formulas T, and Q, stand for the operators on 
I 

The first term tends to zero as t-+oo because 

lim F(3" I', (k) = O. 
!..~ .. 

The second one can be estimated by 

,y2(R, dx) extended from Eq. (8) by inversion. Due to the 
form of Q, one obtains immediately 

!i~I2(t)= ft~x dk~(k)Fr;J.,,/k)~(k) 
= WI (a*(q? )a(q? ». 

113- I'J 

We prove now that 

lim II (t) = o. 
1 ~ x 

II (t ) is the sum of two terms with the same behavior as 
t-+ 00. We only treat the second one. We can write: 

f dp F(3""2 (p) )100 

dx e - i px f + x

OC 

dk eikx(T, ~ )(k»)2 

<2 f dp F(3,.",(p) 

X [I LX dx e 'jJx f j: dk eib(T, ~ + )(k) 12 

+ 1 LX dx e - ipx f': dk eikX(T, ~ )(k ) 11 
where ~ J is the restriction of ~ to Rl . 

We can again limit ourselves to the first term in the 
right part of the inequality which becomes by introducing 
Eq. (8) for (T, ~ + (k): 

8~IJFf32""llx(l- [1-F~""JI/2 X(1-F(3""JO»II~ +-W!, 

and tends to zero because 

p~ F(3,. ".' (k ) = O. 

In conclusion, we have explicitly exhibited a semigroup which asymptotically performs the temperature equalization. 
Remark that! T, ItER + J does not strongly converge to zero, as foJllows immediately from Proposition III.S (ii). 

On the other hand, it is not surprising that the final state is to a large extent independent of the initial conditions. Indeed 
the model is purely descriptive with respect to the thermalization and in particular does not take in account the notions of 
conservation of particle number and energy which permit to induce theoretically the value of( /33' J.l3) from the values of( /31' 
J.l1) and (/3z,J.lz)· 
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Two subgroup relations for double coset matrix elements (DCME) of the symmetric group Sy are 
derived by considering the processes of subduction and induction. The duality of outer product 
coupling in S.y and inner product coupling in GIn identifies these as generalized back coupling rules 
for the Racah algebra of GIn . An iterative procedure for evaluating the DCME, once a consistent 
phase convention is established, is given. As an example the Racah sum formula for the 
Clebsch-Gordan coefficients ofSU2 is derived from consideration of Ss coupling only. 

I. DUALITY OF SN AND Gin 

In a series of papers I we have been developing the con­
sequences of duality between coupling in the symmetric 
group S N and coupling of the integral representations in the 
general linear group GIn and its unitary Un and unitary uni­
modular SUn subgroups. Outer product coupling in S N cor­
responds to inner product coupling in GIn and/or outer 
product coupling in GI(n I + n2 )/Gln I ® Gln2 • This has al­
lowed the identification of Racah recoupling matrix ele­
ments in GIn with double coset matrix elements (DCME) in 
S Nand isoscalar factors in GIn with weighted double coset 
matrix element (WDCME) in S N' As a consequence, results 
which follow from the representation theory of SN (ortho­
gonality of the matrix representations, adjointness with re­
spect to the alternating group AN' character theory, and the 
group orthogonality completeness condition) hold also for 
the Racah algebra of GIn. Duality shows the Racah factors 
of GIn are independent of the particular dimension nand 
requires symmetries (e.g., Regge's symmetries) that appear 
"hidden" when considered with respect to GIn only. Con­
versely, the DCME's and WDCME's of SN are independent 
of the rank N to the extent equivalence relations in SUn may 
be invoked, and symmetries which follow from SUn appear 
hidden when considered with respect to SN only. The basic 
combinatorial structure of the general Racah algebra is evi­
dence by the universal occurrence of square roots of rational 
numbers for the numerical values of all recoupling or isosca­
lar factors. While developing the structural significance of 
the duality between S N and GIn has been our main objective, 
completion of the work requires developing an evaluative 
scheme for the DCME and determining a phase convention 
showing which phases are fixed by consistency with the alge­
bras of SN and GIn and which phases can be set arbitrarily. 

In this paper we develop two recursion relations ex­
pressing the DCME of a group in terms of equivalent ele­
ments of a subgroup. The first of these relations when used in 
S N is the generalization of the Biedenharn, Elliot, and Racah 
sum rules of angular momentum theory.2 When used in con­
junction with the second relation it allows an interative 
scheme to be developed for evaluating a general DCME of 
S N' The two relations are inverse to one another in the same 
sense that subduction is inverse to induction. We give some 
further examples of the nontrivial nature of these two rela-

tions including a derivation of the Racah formula3 for evalu­
ating the Clebsch-Gordan coefficients of SU2. 

The simultaneous consideration of several groups and 
their irrep's requires an initial section on notation. A resume 
of some results from previous work is also giv.en. The next 
section derives the recursion relations for a general group. 
This is particularized to S N in the next section and the itera­
tive evaluation of a general DCME is demonstrated. Other 
examples of these relations and some comments on their 
consequences for a phase convention are also given in this 
section. A complete phase convention remains to be 
established. 

II. NOTATION AND DOUBLE COSET RESULTS 

Any group G can be factored into disjoint double cosets 
(DC) with respect to two subgroups;G '\G /G j (perhaps 
identical) as G = uq ; GqG j' where q are conveniently chosen 
(but fixed) double coset representatives (DCR). In bases 
symmetry adapted to the subgroup sequences (the symbol 
-indicates an isomorphism) 

,/ Gj - q-I ;GqnGj G, j 
;G - ;GnqGjq-1 

on the left (bottom) and on the right (top) the double coset 
matrix element (DCME) can be represented as 

= {j,Aj,Aj{jmm J 
[ 

A q] ..[ A A] 
;A;Ajm Aj ) .. ;m' ;..1. ;Aj q' 

(2.1) 

a result which follows from the isomorphism between the 
subgroups 

;GnqGjq- I = q(q-I ; GqnG)q - 1'Z,G jq 

and an application of Schur's lemma. Here A with appropri­
ate left or right subscripts labels irrep's of the respective 
groups. Because the DCR q is implied in the symbol 

it will usually be omitted as a subscript except when a sum 
over the DC is to be taken. Because of the assumed unitarity 
of the matrix representation, the DCME are unitary on the 
indices ( ;..1., A) with the indices (A, ; A) fixed. This is the 
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unitary transformation between the equivalent bases sym­
metry adapted to the two different subgroup sequences. Let 
1...1 I indicate the dimension of the irrep. and I G I the order of 
the group. A weighting factor occurs frequently in what fol­
lows so we introduce the symbol 

IAAAAI IAlliGIIGjlliAjl. (2.2) 
I I ]] I G II ,A 11...1 j II ;Gj I 

Because of the group orthogonality-completeness condition, 
the weighted double coset matrix element (WDCME), de­
fined as 

I 1
1/2[ A A; A ,Aj A j ; A (2.3) 

also possess unitary properties on the indices (A, ; A jq) with 
the indices (; A, A j) fixed. The WDCME is the unitary 
transformation between two induced representation known 
to be equivalent by Mackey's subgroup theorem. 

To develop the relations of the next section a third sub­
group G (k) is introduced with the notation ;G (k) = ; GnG (k) and G ik ) G (k )nG j and a similar labeling of 
the irrep's. Fixed irrep. labels will be designated by A and 
summed irrep. labels by E. Limits are always implicit in the 
DCME's occuring in the sums. 

III. EQUIVALENCE RELATIONS FOR DCME 

A. By basis transformations in the irrep 

Let G (k ) be a subgroup containing a given DCR q for 
which the matrix representation is block diagonal when 
symmetry adapted toG (k h G /G (k). If the matrix is known 
in this basis, equivalence transformations allow the matrix to 
be evaluated in any other bases. The subgroup sequences of 
concern for the equivalence transformations are 

/"" qi-1GqnGj " 

/G j ~ q;-IGqnGj(k) 

G, /Gj(k) ____ ~ 
/G(k)........... ~;G/k) 

G ;G(k)____ ~ 
~G.......... iG(k)rqGjq-1 

" 1/ iGrqGjq-

The isomorphism between the final groups in the se­
quence follows from qEG (k). Since the corresponding 
OCME's accomplished the transformations among the 
equivalent bases, one has 

(3.1) 

We prefer the form with no explicit delta factors 

228 J. Math. Phys., Vol. 21. No.2, February 1980 

(I) 

This is the first equivalence relation which by itself does not 
provide an iterative procedure for evaluating a OCME due 
to the occurrence of similar terms in the sum which except 
for special choices are presumed unknown. 

B. By projection operators 

Matrix basis projectors defined by 

~ .=~",[A g-I] 
mm G ~ I g 

/lEG m m 

satisfy the orthogonality condition 

e!.m' ~.~ = /jAA' /jm'n' e!.n 

and, on DC decomposition, factor as 

et - '" e;' eA 
j ,Am.Ajn - ~ m,;Ajpq ;AjP,n 

,-€jpq 

X 1...1 ;...1 ; A j A j 1 [ ~ 

(3.2) 

(3.3) 

(3.4) 

By induction a matrix basis projector of a subgroup becomes 
a linear combination of matrix basis projectors in the higher 
group summed over all irrep.'s appearing in the induced re­
presentation, i.e., 

;. L € em m' = e ·Am .'m'· • I tr'-
(3.5) 

Consider the effect of a sequence (taken here as three) of 
projections in various subgroups 

e i A et(k) /j 
;'jm, ;'(k)p, ;'(k)PI,Ajk)pz Ajk)pz, ;';m' 

A (k)] 
A j(k) , 

(3.6) 

where OCME transformations have been used to symmetry 
adapt the induced middle projector to the subgroup se­
quences of the initial and final projectors. The intermediate 
subgroups and irrep.'s indicated by ;...1 (k) and A j(k) need 
not be unique and are chosen so there will be some nonvan­
ishing intersection as indicated by the DCME's on the rhs. 
One can identify the coefficients of identical elements on 
both sides of this expression (the matrix basis projectors are 
by construction orthogonal). In particular, the coefficient of 
the OCR q on the rhs is 

Evaluation of the coefficient of q on the Ihs requires care and 
details are presented in the Appendix. Here we note the sub­
group sequences involved are 
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/ q;-I GqnG j- q;-I GqvG ps' -I G (k )s'''-. 

G s' ; J 

/ 

"'" /,S'q;-IGqs'-1 nGj(k) 

Gj(k) 

/ ............... t ;-1 Gtn Gj(k) '-... 

G-G(k) t'" I G/ k ) 

\ 

'" _____ ,G(k)ns-ItG;t-1 

IG(k) 

/ ----,G(k)nS-IqG;q-I S , 

G ~ 

I ';GnqGjq-I_;GnqGjq-1 nsG(k)s-l~ 
When consideration is restricted to DCR's for which 
q = sts', the second and third subgroup sequences become 
identical as do the fourth and fifth subgroup sequences. 
Moreover, the final subgroups are all isomorphic 
S-;:::; ;G/k )-;:::;S'. the final result demonstrates an equiv­
alence relation among induced representations, i.e., 

I t;k) ;A;:k)} [ ~ jJ {:j ~j~»} 
= I {;A ;A (k)} [A (k) A j(k) ] 

sts'~q ;Aj ;€j(k) s ;A(k) ;€j(k) ( 

X {A ;(~) ;;~~ J.. (3.7) 

The DCR sUbscript is specifically indicated on the right be­
cause the sum is over ;€j(k) and all DCR for whichsts' =q. 
A form more comparable to Eq. (I) is obtained by using the 
orthogonality of the WDCME to obtain 

(II) 

The sum is over all intermediate irrep.'s and compatible 
DCR. Relations (I) and (II) are inverse to each other in the 
same sense subduction and induction are inverse processes. 
Substitution of either relation into the other leads to an 
identity. 

IV. APPLICATION TO THE SYMMETRIC GROUP SN 

For DC decomposition of the symmetric group 
® S ,N \S N / ® S N

j 
we consider cases where the range of all 

subscripts is 2. The DC are in one to one correspondence 
with DC symbols 

[N N] 
;N ;l:rj 

such that all entries are nonegative integers. For a given DC 
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symbol the DCR may be chosen as the C N2 )th power of the 
cyclic permutation C( fi, + IN,) of ordered sets I 2NI J and 

N h . [ I N2 J, i.e., q = (C ,N, + ,N) I 'causes t e permutatton 

(
INI 2N2 IN2 2N2) 

INI IN2 2NI 2N2 

all subsets maintaining a standard order. For the DC symbol 

[~ ~ ;] 
withSN, ®SN, =S1234 ®S567 and S,N ®S,N =S12345 ®S67, 
one may choose the DCR q = (456) 2 = (654). The inter­
twining subgroup S3 ®SI ®S2 ®SI of ®SN

j 
is S123 ®S4 

® S56 ® S7' which is isomorphic under conjungation by q to 
the subgroup S 123 ® S6 ® S45 ® S7 of ® S ,N' All matrix re­
presentations of S N can be taken as orthogonal, which seems 
to be the reasonable (but not necessary) choice which we 
assume here. Since two equivalent orthogonal representa­
tions are related by an orthogonal transformation, all double 
coset matrices of S N can be considered orthogonal. Ortho­
gonality requires 

The irrep. label stands for a partition A f- N with order parts 
(rows) l; >/; +1 . The rows or columns of a DCME must cou­
ple by the Littlewood-Richardson outer product rules.4 In 
the particular case of a one part (node) removal we use the 
notation A ; to signify the subduced representation I; = I j 
- O;j' The orthogonality relations alone allow the evalua­

tion I(e) of DCME of the form 

[~. 
A; 

i]~ A Ij (4.1) 
I; -I; + j - i 

or 

[~. 
A j 

l] Aij 

{
(I; -Ij +j-i+l)(/; -Ij +j-i-l) } 112 

=+ . 
- (I; - I j + j - 1/ 

(4.2) 

The in variance of these values under the transformation 
I;~/; + m,m a fixed integer, is an example of a hidden sym­
metry in S N which becomes apparent under the identifica­
tion of the DCME with a Racah recoupling transformation 
and the use of equivalence in SUn. 

The subduction relation (I) is simply the generalization 
of the closure condition on transformation matrices that has 
led to a variety of sum rules in angular momentum theory. 
The induction relation (II) has no such counterpart. 
DCME's are identical to (9 - J) recoupling transformations, 
and WDCME's for irrep.'s with parts not exceeding the re­
spective dimensions are identical to isoscalar factors I(d),(e) 
for U(nJ + n2 )1Un l ® Un 2 • One may express a recoupling 
transformation of U (n I + n2 ) in terms of recoupling trans-
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formations of Un I and Un 2 and the appropriate isoscalar 
factors. This leads to a particular case of the induction rela­
tion (II). The induction relation is more general since there is 
no dimensional restriction on the irrep.'s. 

An iterative procedure for the evaluation of a general 
DCME by sequential one node additions can be established. 
For the indicated choices, Eq. (II) becomes 

(4.3) 

which allows an iterative buildup of this form from 

1]2 
~ = 1. (4.4) 

(The unit value of this initial form is justified below. Thus 

1 = 1.- tP (A I ) + 1 , 
1]2 
o 2 [l;-lj+j-i ] 

(4.5) 

where tP (AI) = ± 1 for ,12 = [2] or [1 2]. Presuming 
DCME's of this form known, relation (I) with the indicated 
choices becomes 

(4.6) 

which, once a phase convention is established, allows iteration to evaluate any general DCME. 

v. OTHER EXAMPLES 

Relations (I) and (II) have an important bearing on establishing a consistent phase convention. For the indicated choices, 
relation (I) becomes 

[ A, 1,11 

'A'W' 
2,12 

'A'W 
Al A, ] r1) 1,11 

'A'W
2) 2,11 ,A,] 

1,11 1,11 o 1,12 0 1,12 1,1 1,11 1,12 = L 1,11 1,11 o 1,12 0 1,12 

2,11 0 2,11 2,12 2,12 o 2,1 2,11 2,12 2,12 0 2,12 2,11 2,11 0 

[ ,A 1,11 

'A']['A 
2,12 

'A'W 
E(l) ~2)W Al A, ] 

X 1,11 1,11 o 2,11 0 2,11 1,1 1,11 1,12 E(I) 1,11 2,12 • (4.7) 

1,12 0 1,12 2,12 2,12 o 2,1 2,12 2,11 E(2) 2,11 1,12 

Matrix elements of the identity in a given basis of the form 

r' 
Al ~,] Al 

,12 0 ,12 

have unit value. Matrix elements of the form 

[~2 ~I ~:] 
Al Al 0 

are identical to a 3- j symbol and must have value tP (A - A I - ,12) = ± 1 because of orthogonality. The above expression 
thus becomes 

(4.8) 
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The product of phases may be regarded as the matrix element of the DCR in a basis giving block diagonal form, while the other 
DCME's bring about the transformation to the alternate bases. A similar application ofEq. (I) gives the phase upon exchang­
ing the second and third columns (similarly for the rows) as 

42 41] [ 4 
142 141 =ifJ(4 -42 -AI)ifJ( 14 - 1..1,2 - 14 1)ifJ(24 - 242 - 24 1) 14 141 

242 241 24 2..1,1 

(4.9) 

An obvious constraint on any phase convention is that it be consistent with the characteristic roots of the DCR in S N' The 
phase </> (4 - 41 - ..1,2) is in general not separable into a product of phases associated with each irrep. as is the case when 
consideration is restricted to bipartition (SU2) irrep.'s only. The first counter example iSA I = [2,1] = 42 with A = [3,2,1] 
occuring in the symmetrized square and the antisymmetrized square. In such cases it is assumed a phase convention 
ifJ (4 - 4 \21) = +1 and </> (4 - 4 (121) = -1 is possible. 

As an example of another application ofEq. II, consider A = [N - M,M] a bipartition irrep. of S Nand letthe other 
irrep.'s be the one dimensional symmetric irrep.'s of their respective groups. We wish to calculate the DCME 

[

[N - M,M ] NI N2 ] 

IN INI IN2. 

2N 2NI 2N2 

Choose 4 (k) = [m 2].[N - M - m,M - m], m arbitrary, for which;4 tnA. (k)t = 4 = 4 (k )tn 4 j t. Equation (II) yields 

[[N-I~'M] ~I ;2]= f:[[:2] [m:L] ~] 
2N 2NI 2N2 m L [m - L ] 

[

[N-M-m,M-m] [NI -m] 

X LN-m] [INI-m+L] 

[2N - m] [2NI - L ] 

By choosing m = M, the problem is reduced to evaluating the DCME 

[ [~2] [M~K] ~], 
M K [M-K] 

which by an application of the same result is given by 

[ [~2] [M ~ K] ~] = L [[:2] [m : L ] 

M K [M-K] L m L 

[K -L] 
[

[(M - m)2] 

X [M - m] 

[M-m] 

[M-m] 

[M-m-K+L] 

[K -L] 

[M - m] ] 

[M-m-K +L] 

By induction and using 

n'l 0 }-I 
one obtains 

[[:1 
and therefore 

M 
[M-K] 

K 

X[(~=~~ (~r 
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[

[N-M,Ml NI 

IN INI 

2N 2NJ 

(4.13) 

The WDCME of this element is an isoscalar factor identical to a Clebsch-Gordan coefficient ofSU2, i.e., 

[

[N-M,MJ NI N21 
X IN INJ JN2 

2N 2NI 2N2 
which agrees even in sign with previously developed sums for evaluating the Clebsch-Gordan coefficients of SU2. 3 

IV. CONCLUSION 

We have established two sum relations for DCME or 
recoupling coefficients. They are sufficient, once a phase 
convention is established, to allow an iterative evaluation of 
any DCME. However, an iterative one node addition proce­
dure may be very inefficient for evaluating a specific DCME. 
One may take advantage of all symmetries of the DCME's 
and WDCME's to reduce the number of steps relating a de­
sired coefficient to other known coefficients. Association of 
the irrep. 's of S N with respect to the alternating group AN as 
a subgroup of index two and relations based on the character 
theory of SN appear as hidden symmetries from the point of 
view of SUn. Equivalence ofirrep.'s in SUn and complex 
conjugation appear as hidden symmetries from the point of 
view of S N and lead one to consider interchanges of all rows 
and columns in a DCME. In this regard irrep.'s with rectan­
gular Young patterns seem to have special properties. 

There exists historic precedence for a phase convention 
in SU2 (and a history of fixing arbitrary phases in different 
ways). A phase convention for general SUn must be certain­
ly nonsimple. 5 Proposing a phase convention consistent with 
both SN and SUn requires further study. 

Note added in proof All symmetries and a consistent 
phase convention are considered in a paper being prepared 
for publication. 

APPENDIX: Evaluation of the coefficient of q on the Ihs 
of Eq. (3.6) 

Under DC decomposition the Ihs ofEq. (3.6) expands 
as 
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where sums are to be taken over all €,p, and DCR for which 
sts' = q. DC decompose the inner two projectors and restrict 
consideration to the DC with the identity as DCR. In gener­
al, such a restriction proceeds as follows: 

(A2) 

where the last equality holds iff the subgroups T \ G IT are 
identical as in the present consideration. Carrying the 
DCME's and weighting factors implicity and just writing 
down the operator portion, we now have 

(A3) 

Finally, since sts' = q, we may commute the remaining 
projectors with sts' (because of the isomorphism), sum on p, 
and restrict to the identity element to obtain the factor 

A A' ,I ;4 J·11 ;€J(k)1 
{j i '" {j "'''' . 

1 jGj 1 

Collecting all factors generated above and identifying the 
coefficient of q on the two sides of Eq. (3.6), we have 

I II~II [4;k) j4;~)] [~ ~J [;j ~j~~»] 
= I 14114(k);4(k),€j(k)4/k)1 

1 G 114 j4 ;4 j 4 j 1 

[
;4 j4(k)] [4(k) 4 j (k)] 

X ;4 j j€j(k)s j4(k) j€j(k) , 

X [ 4 j ;4 j ] (A4) 
4/k) ;€/k) s" 

Use of the unitarity on the WDCME removes the sum of the 
Ihs and gives the expression (II). 

John J. Sullivan 232 



                                                                                                                                    

'J.J. Sullivan, J. Math. Phys. (a) 14, 387 (1973); (b) 16, 756 (1975); (c) 16, 
1707 (1975); (d) 19, 1674, 1681 (1978); and (e) Proceedings of the Interna­
tional Symposium on Mathematical Physics, Mexico City, 5-8, January 
1976, Vol. I, p. 253. 

2(a) A.R. Edmonds, Angular Momentum in Quantum Mechanics (Prince­
ton University Princeton), 2nd edition, pp. 96, \03; (b) the original litera­
ture is collected in L.c. Biedenharn and H. Van Dam, Quantum Theory 0/ 

233 J. Math. Phys., Vol. 21, No.2, February 1980 

Angular Momentum (Academic, New York, 1965). 
'G. Racah, Phys. Rev. 62, 438 (1942) contained in Ref. 2(b); also Eq. 
(3.6.11) of Ref. 2(a). 

"D.E. Littlewood, The Theory o/Group Characters (Clarendon, Oxford, 
1950). 

'P.H. Butler, Philos. Trans. R. Soc. London Ser. A 277,545 (1975). 

John J. Sullivan 233 
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An algorithm is developed which permits us to construct all the finite subgroups of the 
generalized Lorentz groups O(p,q) up to an O(p,q) conjugation. The application of this algorithm 
to the Lorentz group 0(3, 1) is outlined, and the full list of finite subgroups compiled. 

I. INTRODUCTION 

Properties of the Lorentz group 0(3, 1) and its represen­
tations have been intensively studied for many years in view 
of the important role of the group in physics. • Continuous 
subgroups of the Lorentz group have been classified2 a long 
time ago and have often been used since. 

A classification of the finite subgroups of the Lorentz 
group is undertaken for the first time here, although, as we 
explain below, the problem has been almost solved on several 
occasions in a different context. 

The purpose of this article is to bring together known 
general results concerning finite subgroups of the pseudo­
orthogonal groups O(p,q) and to formulate a computational 
procedure which provides the desired list of representatives 
of O(p,q)-conjugacy classes of finite subgroups of O(p,q). 
Naturally, such an algorithm requires that the finite sub­
groups ofO(p) and O(q) are known. As an illustration we 
solve the problem completely for the Lorentz group 0(3,1). 

Technically, a classification of finite subgroups of 
0(3,1) could proceed in several ways. A possible approach 
would be to recognize that our problem practically coincides 
with a problem ofShubnikov and Koptsik3 and to complete 
their list of 122 anti symmetry point groups which are exten­
tions of the crystallographic groups to the full list of the 
antisymmetry point groups acting in R 3. According to 
Lemma I below; every finite subgroup of 0(3, I) is an 0(3, 1)­
conjugate of a subgroup of 0(4). Hence one could start from 
the known4 subgroups of 0(4). Still another way would be to 
use a continuous epimorphism of the group SL(2,C) on the 
orthochronous Lorentz group O. (3, I). 

In Sec. II two lemmas are formulated which lead to an 
algorithm for finding all the finite subgroups of the general­
ized Lorentz group O(p,q) up to O(p,q)-conjugation start­
ing from known finite subgroups of O(p) and O(q). In Sec. 
III the algorithm is applied to the Lorentz group. The last 
section contains general comments: the relation between the 
finite subgroups of 0(3, 1) and the Shubnikov point groups; a 
criterion which easily distinguishes to which of the five 
groups 00(3, I), SO(3, 1), 0\ (3, I), O2 (3, 1), and 0(3, I), that 
are locally isomorphic to 0(3, I) any given finite subgroup G 

'''Work supported in part by the National Science and Engineering Re­
search Council of Canada and by the Ministere de I'Education du Quebec. 

of 0(3, 1) minimally belongs; the relationship between the 
finite subgroups of (SL(2,C), e 6» and those of 0(3, 1); th 
generating functions and the corresponding integrity base! 
for invariants and general covariants of all irreducible repr(; 
sentations of the finite subgroups. 

II. THE GENERAL ALGORITHM 
A. A first lemma 

The apparent simplicity of the classification problem 
resides in the following misleading argument: Suppose that 
finite subgroup of 0(3, 1) contains a Lorentz-boost B, i.e., a: 
0(3,1 )-transformation which mixes the space and time co· 
ordinates. Since the order of the group must be finite, B 11 

must be the identity for some finite n. But this is impossibl 
since one knows physically that the repeated application 0' 
the same Lorentz-boost is equivalent to a Lorentz-boost wit. 
a parameter r = vic approaching 1. Hence a finite subgrom 
of 0(3, 1) cannot contain a Lorentz-boost and all its element 
will be of the form of a direct sum of an 0(3)-rotation with 1 

possible inversion of the time (t --+ ± t ). 
The error in this reasoning lies in the fact that one has i. 

mind a pure Lorentz-boost which mixes only one of the 
space coordinates with the time. But if the transformation J 

makes simultaneously a Lorentz-boost and a rotation oft!? 
space, it is not impossible that B 11 will be the identity for 
some finite n. In fact, the following 0(3, I)-matrix: 

B~ (~ 
0 0 

;~J 0 a 

a 1J2 
-(3 -a(3 

Va, (3ER, such that a 2 
- (32= I , 0 

is a Lorentz-boost of order 2, i.e., B 2 = I . 
With this fact, how can one hope to find all the finite 

subgroups of 0(3, I) with only those of 0(3) and the time 
reflection group < - 11 > ? (The brackets" ( ... )" mean "thl 
group generated by the element(s)-.. ".) The answer to this> 
given by the following lemma. 

Lemma I: Let G be a finite subgroup ofO( p,q). Then 
there exists a regular (p + q) X (p + q) matrix YEO(p,q) 
such that, for all the elements X of G, Y -\ XY is of the forI! 
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where X' 1 EO(p) and X' 2 EO(q). 
In other words, any finite subgroup of O( p,q) is O( p,q)­

conjugate to a finite subgroup ofO(p) (f) O(q). 
Proof The group O(p,q) is formed by the elements of 

the set 

{X !XER(p+q)X(p+q) such that XTK X=K } P.q p,q' 
(2) 

where K p.q = J p (f) (- lq). 
Firstly form the following set S( G): 

S(G) = {X!X = XTER (p+ q)x(p + q) such that 

gTXg=X,'v'gEG}. (3) 

By definition (2), K p,q ES( G). The elements of this set are in 
one-to-one correspondence with the real quadratic forms 
A (x) = X T Xx (xER (p + q) XI) , that are invariant under the ac­
tion ofG. 

Note that 

Po = I gTgES(G), (4) 
gEG 

which is a consequence of the finite order of G. Moreover, Po 
is a positive definite form, 

xTpox = I xTgTJgx 
gEG 

I (gx?l(gx);;;>O, 'v'xER (p+q)XI . (5) 
gEG 

By a theorem oflinear algebra, the two symmetric ma­
trices K p,q and Po , of which one is positive definite, can be 
simultaneously diagonalized by means of an equivalent 
transformation, 

ZTK P.qZ and ZTpoZ, (6) 

with a nonsingular matrix Z. Since the diagonal matrix 
Z T K P.qZ has the same signature as K p,q ,it is possible upon 
replacement of Z by Y = ZM, where M is a suitable mono­
mial matrix, to have yTK p,q Y = K p,q . Note that a matrix of 
degree p + q is said to be monomial if there is precisely one 
nonzero coefficient in each row and column. And then 

K P.q = yTK p.q Y and pia = yTpo y, (7) 

and YEO(p,q). We claim that the O(p,q)-conjugate sub­
group H obtained from G by calculating Y -I g Y, 'v' gEG, is 
the subgroup we are looking for. 

I t is easy to show that P '0 ES(H); that is a direct conse­
quence of Po ES( G). Define the q following matrices P p + i , 

i= I, ... ,q: 

P p+i = Kp,q + _I_pia, 
a p + i 

(8) 

where a p + i is the (p + l)th diagonal entry of P '0 . The 
P p + i obviously belong to S(H). These diagonal matrices 
have their first p diagonal entries positive and at least one 
zero diagonal element in the last q entries. 

Since P p+ iES(H), its null space, 

KerP . = {x!xER (p+q)xl such that P ·x = O} 
P+l P+ I , 

(9) 

isH-invariant. Further, since KerP p + i does not contain iso-
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tropic vectors (x:;60 butxTK p,qX = 0), the decomposition of 
R (p + q)X 1 in KerP p + i and in its K p,q-orthogonal comple­
ment holds: 

R(p+q)XI = (KerP .) (f) (KerP .)1 (10) 
P+l P+ I , 

where 

(KerPp+y={y!yER(p+q)XI and yTKp,qx=O, 

'v' XE Ker P p + J . (11) 

(Ker P p + i)l is also invariant under the action of H. 
Since the intersection of invariant subspaces is invar­

iant, n; ~ 1 {(Ker P p + i)l} is invariant. However, the ele­
ments of this intersection are just the vectors whose q last 
coordinates are zero: 

where O(q) X 1 means the null vector in R (q)x 1 • 

One could show in the same manner that 

h!XEO(P)XI (f) R (q)XI} (13) 

is also H-invariant. 
The invariance of the two subspaces is tantamount to 

saying that all the elements of H have the desired form: 

h=(X;1 x~J, where X'IEO(p) and X '2EO(q), 

'v' hER. (14) 

Thus Lemma I is proved. D 

B. A second lemma 

Although the preceding lemma provides a simplifica­
tion in the search for finite subgroups of the O(p,q) groups, 
one still needs an easy test to recognize whether or not two 
finite subgroups are O(p,q)-conjugate. This is achieved by 
the following lemma. 

Lemma 2: Two subgroups G,H ofO(p) (f) O(q) are 
O(p,q)-conjugate if and only if there is an isomorphism: 

a:G=>H 

of G on H for which: 

g= (~ ~), h~)' 
gl ,hI EO(p), and g2 ,h2EO(q), and 

Tr (gl) = Tr (hI) and Tr (g2) = Tr (h2)' 

Proof If there is an isomorphism of G on H of the type 
described above, then the traces of the upper block gland hi 
= [a(g)] 1 are equal, so that these blocks form equivalent 

representations of the abstract group [1. There exists A in 
O(p) such that 

(15) 

For the same reason, there exists B in O(q) such that 

h2 = [a(g)]2 = B -I g2B, 'v' gEG. (16) 

Hence 

h = a(g) = (A (f) B) -I g(A (f) B) 

and A (f) BEO( p,q). 
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Conversely, let G and Hbe O(p,q)-conjugate subgroups 
ofO(p) al O(q) such that H = A ~ IGA for some A 
EO( p,q). Then there is a finite set of nonequivalent unitary 
irreducible representations rpl ,rpz , ... ,rp" of the abstract 
group ::1 such that: 

G3g= (G~(g) o ) ,. 
G (g) 

, Gi ~ Hl ai"rp" , 
2 4 .. - I 

(
HI (g) 0) ,. 

H3A \gA = H (g) , Hi~ _~ bi"rpk' o 2 k. t 

(18) 

for i = 1,2. Here the multiplicities aik , bi" are nonnegative 
integers for i = 1,2, k = 1,2, ... ,v. 

It is our aim to show that Gi and Hi are equivalent for 
i = 1,2, i.e., ai" = bik for i = 1,2, ... ,v. Without loss of gener­
ality, we may assume that the following equalities already 
hold: 

" 
Gi = al aikrp", H, = al b'krp,,(i= 1,2). (19) 

k _ I ,,_ I 

We want to show that G, = Hi for i = 1,2. 
Now let Vcr, be the R-linear subspace of the (p + q)­

column space R (p + q)X I which is invariant under the action 
of GI al G2 such that it is maximal among the G1 al Gz-
invariant supspaces of the (p + q)-column space with the 
property that every irreducible component is equivalent to 
rp" . It is known from general representation theory that Vcr, 
is uniquely determined by rp" and it gives rise to a representa­
tion of G that is equivalent to (a I k + azdrp" . In fact, it is 
formed by all (p + q)-columns with the property that alljth 
coefficients are zero unless: 

I alh[rph]<J< Ialh[rph]' 
h < k h"k 

or 

(20) 

I a2drph] < J - p< I aZh [rph] , 
h<k h·- k 

where [rph] denotes the degree of the representation rph . 
The signature of the restriction of K p,q to V'f" is equal to 
(a Ik [rpk ] , az" [rpk ]) . Similarly we define the corresponding 
subspace V'~" for HI al H2 and find the signature ofthe 
restriction of K p,q to V'"" to be equal to (b l " [rpk ] , 
b2k [rpk ]) . But because of the O(p,q)-conjugacy of GI 

al Gz , HI al Hz that was assumed above, it follows that 

V''f'' =AVop, so that 

ai" = hi" (i = 1,2) , (21) 

for k = 1,2, ... , v. 
These equalities are tantamount to the equality of the 

traces of the upper blocksg l and hI = [a(g)ll and of the 
lower blocks gz and hz = [a(g) L: 

Tr(gl) = Tr(h l ) and Tr(gz) = Tr(hz)' 

'rJgEG and h = a(g)ElI. 

C. An algorithm 

o 

The two lemmas lead to a natural algorithm for finding 
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the finite subgroups ofO(p,q) [up to O(p,q)-conjugation] 
starting from the known finite subgroups ofO(p) and O(q). 

Let FSG [Oem)] be a list of representatives of conjugacy 
classes [under Oem)] of the finite subgroups of the group 
Oem) of orthogonal mXm matrices. A list FSG[O(PI , 
pz) ] of the representatives of the conjugacy classes 
[under O(PI ,pz)] of the finite subgroups of the group 
O( PI' P2 ) of pseudo-orthogonal (p + q) X (p + q) matrices 
will be given by the following procedure: 

l.Pick out of the FSG [O(p;)] , i = 1,2, two members 
Xi (one for each Pi) , construct the "natural" representation 
tP, , 

tPi:Xi - O(p,) , (22) 

and the subgroup of the group Aut(Xi ) of automorphisms of 
Xi which preserve the character of the representation !/Ii , 

Aut,;,,(X;) = {alaE Aut (X;) and 'rJXE%i: 

Tr(x) = Tr(ax)} . (23) 

2. Form a list of the representatives of the conjugacy 
classes under Aut"" (X\) X Aut,io, (X2 ) of the subgroups 

G = {AI (g)XA 2 (g) = gIA,(g)E%i ,i = 1,2}, (24) 

of the direct product XI XX2 such that G satisfies the semi­
direct product condition, 

A,(G) = X, i = 1,2. (25) 

3. Form the (finite) list SG(XI ,xz) of the subgroups of 
O(PI ,Pz) obtained from G, 

G = {AI (g) al .12 (g) IgEG } . (26) 

4. The union of the lists SG(XI ,xz) for all pairs XI 
E FSG [O( PI)] and Xz E FSG [O( pz)] gives the desired list 
FSG[O(pl ,pz)] . 

III. AN EXAMPLE: FSG[O(3,1)] 

The application of this algorithm to the Lorentz group 
0(3, I) supposes that one already has the lists FSG[O(1)] 
_ FSG [ ( - II > ] and FSG[0(3)]. In fact, FSG [ < - II ) ] 
contains only two elements, (1) J and < - 1\ ) 
= [(1),( -1) J, and FSG[0(3)] is well known. First let us 

explain how to obtain FSG[O(p)] for P odd, from the known 
FSG[SO(p») because the procedure is exactly parallel to the 
problem of finding FSG[0(3,1)] from the known 
FSG[0(3)]. 

A. The list FSG[O(3)] 

Any subgroup G of O( p) for P odd is an element of one 
of the following disjoint sets: (i) the set of subgroups of 
SO(p), (ii) the set of subgroups ofO(p) containing - I p , 

a~d (iii) the set of the remaining subgroups of O( p). In the 
second case (ii), there is the decomposition G = [G n SO(p)] 
X < - I > of G into the direct product of its intersection 
with SO( p) and the center of O( p). In the third case (iii), we 
can obtain from (; a subgroup GCSO(p), i.e., a subgroup 
belonging to the set (i), by a Goursat twist4

: 
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The intersection G n SO(p) is an invariant subgroup ofG of 
index 2. Conversely, from any subgroup G ofSO(p) which 
has a subgroup N of index 2, we can construct a Goursat 
twist G in the following way: 

G = {g!gEN or gE - I p.(G \N)}. (28) 

Ifp is odd, it is easy to show that O(p)-conjugacy is 
equivalent to SO(p)-conjugacy. As a corollary, two sub­
groups of the set (ii) [or (iii)] will be O(p)-conjugate ifand 
only if their intersection with SO(p) is SO(p)-conjugate. 

Consequently a representative list FSG[O(p)] (for p 
odd) is derived from a representative list FSG[SO(p)] upon 
extending FSG[SO(p)] with the list of the direct products 
G X CO(p) [CO(p) is the center ofO(p), i.e., ( - I p > ,and 
G ranges over FSG[SO(p)] ] and with the list of the Goursat 
twist subgroups of the form (28), where GEFSG [SO(p)] con­
tains a subgroup N of index 2 and N ranges over a representa­
tive set of the conjugacy classes of the subgroups of G of 
index 2 under the normalizer Norso(p)G of Gin SO(p). 

Explicitly, the list FSG[SO(3)] is known to be formed 
by: 

(a) The cyclic rotation groups en = (Rn> for nEN + of 
order n, where 

R = n 

o 

o 0 
21T 

cos­
n 

. 21T 
SIn-

n 

. 21T 21T o -SIn- cos-
n n 

which satisfies the relation R ~ = 13 . 
(b) The dihedral rotation groups Dn = (Rn ,D> for 

2<,nEN + of order 2n, where 

(-1 0 0) 
D= 0 O. 

o 0 -1 
The generators satisfy the relations 

D2=(DRn?=I3 ; 

(c) The tetrahedral rotation group T = (R2 ,D,R '3> of 
order 12, where 

o 1) 
00, 
1 0 

which satisfies (DR' 3)3 = R '~ = 13 ; 

(d) The octahedral rotation group 0 = (R 2,D,R '3' 
R '2 > = (R ' 3 ,R '2> of order 24, where 

R', ~G ~l ~) 
which satisfies (R '2)2 = (R '2 R '3)4 = 13 . 

(e) The icosahedral rotation group I = (R2,R "3> of 
order 60, where 

237 

/3 
a 

o 

-/3 
a 
o 
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~) 

with 

and 

/3=-Vl-a2
, 

subject to (R "3)3 = (R2 R " 3)5 = 13 . 
A list FSG[0(3)] is obtained, as mentioned above, by 

extending FSG[SO(3)] by the direct products G X CO(3), 
GEFSG[SO(3)] and the Goursat twists. These Goursat twist 
groups are 

( - R n > for n even> 2, 

(Rn' - D > for n>2, 
( - Rn,D > for n even >4, 
( - R '2,R '3 > 

B. The list FSG[O(3,1)] 

obtained from the cyclic 
groups, 
obtained from the 
dihedral groups, 
obtained from the octahedral 
group. 

To follow the algorithm presented in the preceding sec­
tion, one must pick XI EFSG[0(3)] and X2 EFSG [ (- II>] . 
Since FSG [ ( - II > ] has only two elements, the elements of 
FSG[0(3, 1)] will be groups either with no elements revers­
ing time [X2 = 1(1) J), or with some elements reversing it 
(X2 = ( - II ». The second step of the algorithm consists in 
constructing the subdirect products of XI ,X2 • Thus the 
groups with some time reversing elements can be distin­
guished as the groups which are the direct products of XI 
and X 2 = ( - II > and the groups which are their subdirect 
products but not their direct products. In consequence of 
this procedure, the list FSG[0(3, 1)] is partitioned as follows: 

(i) XI Ell 1, where XI EFSG[0(3)] and 1 is the identity 
acting on the time coordinate, 

(ii) XI Ell « -1) ) ,the direct product XI X ( - II> ' 
and 

(iii) [(XI \N) Ell (-1) ]u[N Ell (1)], whereNisa re­
presentative of a NorO (3) XI -conjugacy classes of subgroups 
of XI of index 2 (see below): The subgroups (iii) are the 
subdirect products and correspond to the Goursat twists. 

Let us give an example of the procedure. Let XI 
= (Rn ,D, - 13 > ' the group obtained by the direct product 

of Dn with the space inversion. If one takes X 2 = [(1) J, one 
obtains (Rn ,D, - K 3,1 > . [When the AEO(3) is used to de­
scribe a generator of 0(3, 1), it must be understood asA Ell 1, 
- A, an'd - I4A denote ( - I3A) Ell ( +1) and - 14 
(A Ell ( +1» respectively.)!n the same way, if X2 = ( - II> 
and one keeps all the elements of the direct product, one gets 
(Rn,D, -K3.1 >X (- 14>' 

The subgroup XI = (Rn ,D, - 13 > leads to many twists. 
For any n, one has at least three subgroups of index 2: 
(Rn,D) , (Rn' - 13 > ,and (Rn' - D) . When n is odd, 
those three are the only ones. For n even, R n may not appear 
as a generator and four other subgroups are possible: 
(R n12 ,D, - 13 >, ( - Rn,D >, (R n/2 ,DRn, - 13 >, and 
( - R n , - D > . (It can be seen that those seven subgroups 
exhaust the possibilities for n even; in fact, each of them 
corresponds to a way of removing at least one of the three 
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generators R" ,D ,and - 13 of the elements of the initial 
group. For example, none of the three generators appears in 
the last example given above.) 

Since Autl/" (X2 ) [see relation (23)] contains only the 
identity, Aut.;" (XI) X Autl/., (X2 ) is isomorphic to 
Autl/" (XI) , which is isomorphic to a subgroup of NorSO(3) 

XI . The second step of the algrorithm is then equivalent to 
finding which of the seven aforementioned subgroups belong 
to distinct conjugacy classes under NorSO(3)XI • One can 
find NorSO(3) (Rn ,D, - 13 > as follows: The centralizer of 
the dihedral groups Dn (n:>4; n = 2 must be studied sepera­
tely) is ( - 13 > in 0(3) and simply (13) in SO(3). But the 
centralizer of a subgroup is an invariant subgroup of its nor­
malizer and the factor group is isomorphic to a group of 
automorphisms of the subgroup. Since the D" are finite, all 
groups of automorphisms of D" are also finite. Then 
Norso(3)Dn must be finite and equivalent to a member of 
FSG[SO(3)]. Morever it contains D" . If RmENorSO(3) 
(Rn ,D > , the relation R ;::-1 DRm = DR ;n = DR ~ must 
hold for a given i. The greatest value of m is then m = 2n and 
Norso(3) (R",D) = (R2",D) . Hence NorSo(3) (R",D, 
- 13 ) = (R2n ,D > . The first three subgroups are not conju­

gate and they lead to the three twists: (R n ,D, - 14 > ' (R n , 

- K 3,1 , - 14D) , and (R" , - D, - 14) . The sixth and 

seventh ones are respectively conjugates of the fourth an{ 
fifth ones by the matrix R 2 " • Hence X 2 = (R" ,D, - 13 ) 
leads to two other subgroups of the type (iii) for n even :>: 
(R" EB (-1), D, - K3,1)' ( - R" ,D, - 14) . The proce· 
dure is then finished for this pair (XI ,x2) . 

Table I gives the list of representatives of FSG[0(3,] 
in terms of their generators. Each column represents one 
type [(i), (ii), or (iii)]. 

IV. CONCLUDING REMARKS 

The first observation is that the representative list 
FSG[0(3, 1)] becomes finite if we restrict the representatie 
list FSG[0(3)] to the crystallographic groups. In fact, WI 

must omit the icosahedral groups and all the cyclic and dil!­
dral groups with n =1= 2,3,4, and 6. In this case our list wil 
present the 32 crystallographic groups (first column), 32 i­
rect products of the 32 crystallographic groups with the 
group (13 EB ( -1) > (time inversion) (second column), ad 
58 Goursat twists (third column), i,e., 122 crystallograplc 
groups where the time is allowed to be reversed. These 12 
groups are in fact the two-color crystallographic groups r 
the Shubnikov point groups. This knowledge enables us ) 
represent the elements of the list FSG[0(3, 1)] by means f 
the Shubnikov two-color diagrams. 3 

T ABLE I: The Representative List FSG[O(3,I )J. The items in curly brackets are present only when n is even. 

(i) GeO(3) Ell I 

Cyclic Groups (R,,) 

Dihedral 

Groups 

(R,,)X( - K,,) 

I (- R,,)l 

(R",D) 

(R",D)X (- K
"

I) 

(R",-D) 

1(- R,,,D)1 

Tetrahedral (R 2,D,R " ) 
Groups (R, ,D,R " ) X ( - K" 1 ) 

Octahedral (R '"R " ) 
Groups (R'2,R',)X(-K"I) 

(-R'"R',) 

Icosahedral (R, ,R ", ) 

Groups (R"R",1)X(-K',I) 

n;;'\ 
n)1 

n)2 

n)2 

n)2 

n)2 
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(ii)G X (I, Ell ( -I) ) 

(R,,)X (K'1 > n;;d 
(R,,) X ( - 1, ) X (K'1 ) 

1(-R,,)X(K,1 )1 n)2 

(R",D) X (K"I) n)2 

(R",D)X (K"I)X (- 14) n)2 

(R", -D)X (K'1) 

I (- R",D) X (K
"
l) I 

(R"D,R',) X (K,,) 
(R, ,D,R " ) X (K

'
,l ) X ( - 14 ) 

(R '"R',)X (K
"

I) 
(R '"R .. ) X (K

" 
I ) X ( - I, ) 

(- R '"R ',>x (K" > 

(R"R ",)x (K,,) 
(R'2,R",)X(K u )X(-I.) 

(iii) Goursat twist 

I(R" Ell (-I)) 
(R,,) X (- 14) 
I(R" Ell (-I))x(-K,, )! 
I ( - R,,) X ( - I.) I 
1(-1.R,,)1 

(R,,,D Ell (-I) ) 
I (R" Ell (-I),D )! 
(R,,,D)X (- I.) 
(R",-1. D)X(-K'1) 
(R", - D)X (-1.) 
I(R" Ell (-I),D) 
X(-K,, ») 
I ( - R" ,D) X ( - I. )! 
(R", - I.D) 
!(R" Ell (-l),-D)l 
1(-R",DEIl(-I))) 
I (D, -1,R,,)1 
I(DEIl (-I), -1,R,,)! 

(R"D,R',)X (-14) 

(R', \1) (-I),R', > 
(R '"R ',)X( -14) 
( - R ' , ,R " ) X ( - I, ) 

n)2 
n>1 
n)2 
n)2 
n)2 

n)2 
n>4 
n)2 
n)2 
n)2 

n>4 
n)4 
n>2 
n)2 
n)4 
n)4 
n)4 

(R', \1) (-I),R',)x(-Ku ) 

(- 14R '"R ',) 
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FIG. 1. Hasse diagram for O(p,q). DO(p,q), SO(p,q), 0, (p,q), O,(p,q), 
and O(p,q) are respectively the identity component or derived group, the 
group of (p + q) X (p + q) real matrices with determinant det = + I, the 
group of transformations with the spinor norm' spn = + 1, the group with 
det spn = + I, and the full pseudo-orthogonal group. 

As a second observation, we want to classify the finite 
subgroups of 0(3,1) with respect to which of the five groups 
DO(3,1), SO(3,1), 0 1 (3,1), O2 (3,1), 0(3,1) they minimally 
belong. The commutator group of any generalized ortho­
gonal group coincides with the identity component. The fac­
tor group of any generalized Lorentz group over its identity 
component is a Klein 4 group with the Hasse diagram of the 
intermediary subgroups (see Fig. 1). 

Each subgroup G ofO(p,q) generates together with 
DO(p,q) one of the five groups diagrammed above. In par­
ticular for each member of FSG[0(3,1)], we find that: 

(i) GCDO(3,1), ifG=HEB I where 
HEFSG[SO(3)] , 

(ii) (G,DO(3,1» = 0 1 (3,1), ifG = H EB 1 where 
HEFSG[SO(3)] but 
EFSG[0(3)], 

(iii) (G,DO(3,1» = SO(3,1) if not all the generators of 
G are expressible in the 
form X EB 1 [XEO(3)] but all 
these are of determinant 
+1, 

(iv) (G,DO(3,1» = O2 (3,1), if not all the generators of 
G are of the form X EB 1 but 
all are either of the 
form X EB I with XESO(3) or 
X EB (-1) withXE -13 

SO(3), 
(v) (G,DO(3,1» = 0(3,1), otherwise. 

Thirdly, we want to point out that our list FSG[0(3, 1)] 
can be used to determine subgroups of 

(SL(2,C),(~ ~)). 
Observe first that the following decomposition of the Lo­
rentz group into the direct product of the subgroup 0 1 (3,1) 
and of the center holds 
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0(3,1) = 0 1 (3,1)X (- 14) . 

Moreover, there is a continuous epimorphism (a surjective 
homomorphism), 

E:(SL(2,C),(~ ~)) ~I (3,1), 

of the group formed by the complex matrices of dimension 2 
and determinant ± 1 on the subgroup 0 1 (3,1) of the Lo­
rentz subgroup. The epimorphism E is a local isomorphism. 
Its kernel is the center ofSL(2,C) which is gerrerated by 
- 12 . The subgroup SL(2,C) is mapped by E on the identity 

component of the Lorentz group. Making use of E, our classi­
fication also leads to a classification of the finite subgroup 
conjugacy classes of the factor group of 

( (0 01)). SL(2,C), 1 

over the center ( - 12 ) . 
Finally, it should be noted that the generating functions 

and the integrity bases for all the irreducible representations 
of the elements ofFSG[0(3, 1)] are already calculated. When 
the finite subgroup G lies in the first set (i), it is isomorphic to 
the subgroup G 'EFSG[0(3)] from which it has been ob­
tained. In this case, Patera, Sharp, and Winternitz6 have cal­
culated all the generating functions and the integrity bases 
for all the irreducible representations. When G lies in the 
second set (ii), the generating functions are obtained from 
those ofG'EFSG[0(3)] (G = G'X (- 14» using the rela­
tions (34)-(37) of Ref. 6. Then, in the case (iii), G is isomor­
phic to the group from which it has been obtained by a Gour­
sat twist. Hence, its generating functions and integrity bases 
are the same as those of this group. 
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This work employs the powerful geometric methods previously developed in order to determine 
all solutions of the nonlinear system (Vyf=Vy. Vy = /(y), (V2yf - (l/2)(N +2)f/(y)V2y 
+ (l/4)(N +1)[f/(y)f - (l/2)N/(y)f"(y) = - NVy.V(V 2y), where/(y) is an arbitrarily as­

signed function and N is an arbitrary constant. The circumstances are determined under which 
compatible solutions exist, not only when y is real, but also when y is complex, and all of the 
corresponding solutions are found. This is done by referring the system of equations to a set of 
coordinates based on the (real or complex) equipotential surfaces of constant y. The relationship 
between the solutions and the geometry of the equipotential surfaces is examined, and a close 
association is discovered between the set of allowable equipotential surfaces and the class of 
surfaces of constant total (Gaussian) curvature. These results are analogous to those in Collins, 
Math. Proc. Camb. Phil. Soc. 80, 165-87 (1976), where the system under study was associated 
with equipotentials of constant radii of principal normal curvature. The geometrical method used 
throughout is remarkable in that it yields a knowledge of all solutions of the given system. It 
thereby offers the possibility of application to a wide variety of fields in physics where similar 
systems of equations are encountered. 

1. INTRODUCTION 

In a previous article I, a system of nonlinear partial dif­
ferential equations, viz., 

(Vyf = Vy.Vy =/(y) (l.1a) 

and 

(1.lb) 

was studied, and an application was later given. 2 The quanti­
ty y was real or complex, the functions/(y) and g(y) were 
arbitrarily assigned, and the operators V and V2 referred to 
(complexified) three - dimensional Euclidean space. In ef­
fect, all possible functions/(y) and g(y) were determined for 
which the system (1.1) admits a solution, and, in each case, 
all compatible solutions for y were found. This was done by 
developing a geometric technique due to Friedlander/ who 
solved a certain system of nonlinear partial differential equa­
tions by considering the geometry of the equipotential sur­
faces for one of the dependent variables. In the case of system 
(1.1), where y may be complex, equipotential surfaces may 
be investigated in complexijied three-dimensional Euclidean 
space. This engenders a richer class of solutions, since the 
geometry of such surfaces is more diverse than in the real 
case. This is particularly exemplified in the case where 
/(y)_o in Eqs. (1.1). The equipotentials are then "null" sur­
faces, having the property that any vector normal to the sur­
face at any point is also tangent to the surface at that point. 
On the other hand, if/(y) =1= 0, then the rate of distortion of 
the normal congruence is described by means of a symmetric 
shear tensor, which, since it is in general complex, does not 
necessarily have three distinct eigenvectors 1. Such diversity 
is directly reflected in the wider class of solutions that 
emerges from the system (1.1) in the case where y is complex. 
In Ref. 1 (cf. Ref. 4), the geometry of complex surfaces in 

complexified three-dimensional Euclidean space was devel­
oped, and some familiarity with that discussion will now be 
assumed. For future reference we shall re-state the following 
theorem. 

Theorem 2.5 (Ref. 1): The set ff of all null surfaces 
consists of the set 9 of all null planes. together with a set J 
of surfaces described (parametrically) by the equations 

x = ifJsina + f-t(a), 

y = i{3cosa - fa f-ta(a)tana da + ao, 

and 
z =(3, 

where f-t(a) is an arbitrary function, and ao is an arbitrary 
constant. No member of Y is a null plane. Symbolically, 

ff = 9 u Y with 9 () Y = ¢l. 

In the present article, we shall discuss the following 
system of nonlinear partial differential equations: 

(Vy)2= Vy.Vy =/(y) 

and 

(V2y)2 - !(N +2)f/(y) V2y + l(N +1) [(/(y)j2 

- !N/(y)f"(y) = - NVy.V(V1y), 

(l.2a) 

(l.2b) 

where y is real or complex./(y) is an arbitrarily assigned 
function, and N is an arbitrary constant. This system is su­
perficially much more complicated than the system (1.1). It 
will be shown, however, that system (1.2) is closely related to 
system (1.1), and that compatible solutions to Eqs. (1.2) exist 
only in rather special circumstances. These circumstances 
are summarized in Table 1. An application of the results will 
be given in a subsequent article. 

In the case where the equipotentials of yare not null 
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TABLE I. A summary of compatible solutions to the system (Vy)' = f(y);(V'y)' - !(N +2)!,(y) V'y + l(N +1) [j'(yW -!N f(y)!'(y) 
= _ NVy.V(V'y). The quantity ris finite and nonzero. The entry $(}-""I means thatf(y) is not identically zero and that it has been transformed to unity by a 

change of variable. The quantities (J and (T are respectively the area of expansion and the shear scalar of the normal geodesic congruence of the equipotentials 
( y = constant I. 

(Generalized) 
Principal radii of 

(Vy)' N normal curvature 
= f(y) (constant) Solution y of equipotentials 

Y=Yo ... 

Arbitrary 
0 I/J(y) = 1 (y)x + m(y)y 00,00 

+ n(y)z 

(a, {J) eliminant of 
x = i{J sina + I'(a,y) 

1 
y = i{Jcosa oo,r 

X f!a(a,y) 

tanada + ao(Y) 
z={J 

$0 y=Yo ... 

Ix+ my+ nz+A 
Arbitrary 00,00 

1', x + I',y + I',z 
+ 1/J(2, x + 2,y + 23Z) 

$(}-""I 1 I(a)x + m(a)y oo,r 
+ n(a)z + A (a) 

± [(x _ x,)' + (y _ y,)' 

2 + (z - z,)'],!2 +A r, r 

aF +A(fJ) 
a{J 

[f(y)$O], we can assume, without loss of generality, that 
!(y) = 1, by a change of dependent variable. Compatible so­
lutions will then exist only if V 2y = 0, or if V 2y# 0, and 
N = 1 or 2. In the real case, the equipotentials of yare 
planes, nonplanar developables, and spheres, respectively. 
In the complex case, the equipotentials are complex general­
izations of these surfaces, together with a more complicated 
set of surfaces which is not admitted for real y. 

If the equipotentials of yare null (f(y)=O], compatible 
solutions exist only if either V 2y = 0 or N = 1 and V 2y#0. 
The equipotentials (necessarily complex) are, respectively, 
null planes and arbitrary elements of the set Y of nonplanar 
null surfaces. In other words, if (Vy) 2 = 0, then necessarily 
(V2y)2 = - Vy.V(V2y). 

The above discussion exhausts all possibilities for the 
equipotentials of solutions to the system (1.2), and the only 
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Total 
(Gaussian) 
,curvature V'y (J (T Conditions 

'" ... ... Yo constant 
0 ""I,m,n arbitrary; I,m,n not all zero 

and I' + m' + n' = O. 

0 
0 0 

I'(a,y), ao(Y) arbitrary functions 

#0 #0 

Yo constant 
... 0 ... '" f(yo) = (N +1) [!'(Yo)]' 

-2Nf( Yo)!"(Yo) = 0 
l,m,n,A constant; I' + m' + n' = 1 

0 0 0 0 ",arbitrary; ","$0;1',,1',,1'3' 

2" 2" 23 constant;l'; + I'~ + I'~ = I; 
2" 2, , 2 3 not all zero and 
2; +2i +2i =0; 
2,1', + 2,1', + 2 31'3 = 0 

#0 I' + m' + n' = I; at most one of 1 '(a), m'(a), 
and n'(a) is identically zero; a = a(x,y,z) 
given by 
1 '(a)x + m'(a)y + n'(a)z + A '(a) = 0 

#0 #0 x, ,y" z,' and constant 
I 

r' 
0 

F(fJ, x, y, z)~1/J (fJ) + H(1 - {J')x 
+ i(1 + {J')y -2{Jz] = 0; 

A ( {J) and I/J ({J) arbitrary except that 

A '({J) and I/J '''({J) are not 
simultaneously zero 

other cases admitted are those for which there are no equipo­
tentials at all, viz., y is identically constant. 

The system (1.1) has been investigated, 1 first in the real 
case, resulting in Theorem 3.1 of Ref. 1 (which gave the 
conditions for compatible real solutions, and determined all 
such solutions), and then in the complex case, resulting in 
Theorem 4.1 of Ref. 1 (which gave conditions for compatible 
complex solutions, and determined all such solutions). Fi­
nally, it was shown in Theorem 4.2 of Ref. 1 that the equipo­
tential surfaces for (nonconstant) solutions of system (1.1) 
could be characterized by their constant (possibly infinite) 
principal radii of curvature. In the present article, we present 
three analogous theorems for the system (1.2). In Sec. 2, we 
determine all real solutions, in Sec. 3 all complex solutions 
are found, and in Sec. 4 we characterize the equipotential 
surfaces for (nonconstant) solutions of system (1.2) by their 
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constant (possibly infinite) total (i.e., Gaussian) curvature. 
In particular, we observe that the system (1.2) is a general­
ization of system (1.1), in the sense that all solutions of Eqs. 
(1.1) are also solutions of Eqs. (1.2). 

2. REAL SOLUTIONS OF THE SYSTEM (1.2) 

In this section we examine the system of equations 

(Vy)2 = Vy·Vy = f(y), 

(V2y)2 - !(N +2lf'(y) V 2y + !(N + 1) [f'(y) F 
- !Nf(ylfl/(y) = - NVy.V(V2y), 

(l.2a) 

(1.2b) 

determining the functionsf(y) and the values of N for which 
real solutions exist, and determining the solutions them­
selves in each case. The method used here will be the same as 
in Ref. 1; this method adapts the technique of Friedlander3 

to the system under discussion. Our general result is now 
given. 

Theorem 2.1: Real solutions to the system 

(Vy)2=Vy.Vy = f(y), 

(V2y)2 - !(N +2lf'(y) V 2y + !(N +1) [f'(y)F 

- !Nf(ylfl/(y) = - NVy.V(V2y), 

(where N is constant) in three-dimensional Euclidean space 
can exist only when one of the following holds: 

(i)f(y)=O; then y = Yo, where Yo is a constant, or 
(ii)f(y)$O,f(y);;.O; then y = Yo is a solution ifandonly 

if Yo is a common root of!(y) and (N +1)[f'(y)]2 
-2Nf(ylfl/(y), or 

(iii)f(y)$O,f(y);;.O, and, if v is any solution of the equa­
tion Vi = [f(y)] -1/2, where a prime (') denotes differenti­
ation with respect to y, then 

(VV)2-Vy·VV = 1 (1.2c) 

and 

(l.2d) 

Three possibilities occur: Either (a) V 2y = OandNis an 
arbitrary constant: The equipotentials are planes, and 
v = Ix + my + nz + A, where I, m, n, and A are constants, 
and/ 2+m2+n2= l;or 

(b) V 2y#0 and N = 1: the equipotentials are the non­
planar developable surfaces, and y is given by the a eliminant 
of 

y = I (a)x + m(a)y + n(a)z + A (a) 

and 

0= ['(a)x + m'(a)y + n'(a)z + A 'ea), 

where 12(a) + m 2(a) + n2(a) = 1, and at most one of f'ea), 
m'(a) and n'(a) is identically zero: or 

(C)V2y#0 and N = 2: The equipotentials are spheres 
and y = ± R +A, whereR = [(x -XI )2 + (y _ YI)2 

+ (z - Z I )2] 112 and x] ,y l'Z] , and A constants. The con­
stants l,m,n,x l ,Y] ,Zl ,Yo' and A are all real. 

Proof Iff(y)=O, then the only real solution is clearly 
y = Yo, where Yo is an arbitrary constant. In this case, N is 
arbitrary. 

If!(Y)~O, then y = Yo is a solution if and only if!(y) 
and (N + 1) [f"(y) ]2 - 2Nf(ylfl/(y) possess a common zero 
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Yo' For example, y = 0 is a solution if!(y) = y2. 
Real solutions with y not identically constant will exist 

only whenf(y)$Oandf(y);;.O, and we shall now focus atten­
tion on this remaining case. Defining a new variable v by 
dvldy=v' = [f(y)1- 112

, it follows that (VV)2 = 1. This 
means I ,3 that the equipotential surfaces are orthogonal to a 
congruence of straight lines ("rays") and that a Gaussian 
coordinate system (a,{3,v) can be introduced by specifying 
any point p (sufficiently locally) by means of its normal dis­
tance v to an initial surface v(x,y,z) = 0, and the position 
(a,{3) of the point of intersection q of the ray throughp with 
the initial surface. It is most convenient to choose the coordi­
nates (a,{3) in the initial surface by using orthogonal curva­
ture line parameters, making the coordinate system (a,{3,v) 
orthogonal. Using Rodrigues' formulas 

au = - rna and a ff = - snff , 

the metric becomes 

dx 2 = H 2da2 + K 2d{32 + dv, 

(2.1) 

(2.2) 

where a(a,{3) is a vector drawn from the origin to the point q 
on the initial surface, D is a unit normal to the initial surface 
at q, r = r(a,{3) and s = s(a,{3) denote the principal radii of 
curvature (which are nonzero, but may be infinite) of the 
initial surface, H (aa·ao )1/2 (1 - vir), K=(ap,a/3)]/2 
X (1 - vis), and suffices denote partial derivatives. Further 
details are given in Ref. 1. In this coordinate system, Eq. 
(1.2a), or equivalently Eq. (1.2c), is seen to follow automati­
cally. The equations 

and 

1 a 1 
V2v= --(HK)= --+ 

HK av v-r v-s 

Vv.V(V2v) = J!..- (_1_ J!..- (HK») 
av HK av 

1 1 

show that Eq. (l.2b), or equivalently Eq. (1.2d), becomes 

(V2V)2 = - NVv·V(V
2
v)<===> ( v ~ r + v ~ J2 

= N ( 1 + 1). (2.3) 
(v_r)2 (V-S)2 

Three possibilities now arise. One [case (a)] is that both 
rand s are finite, and then r = s, N = 2, and V 2V~0. A 
second possibility [case (b)] is that exactly one of rand s is 
infinite (without loss of generality, s = (0), and then N = 1 
and V 2V~0. Finally [case (c)], both rands can be infinite, in 
which case Eq. (2.3) represents no restriction on N, and Eq, 
(1.2b) is identically satisfied, since V 2y = O. We shall con­
sider these three cases separately. 

Case (a): r = s = 00, N is an arbitrary constant: Here 
V 2V = 0 and our system is identical to that treated in Case 
(3.7a) of Ref. 1. The equipotentials are therefore planes, and 
the general solution is v = Ix + my + nz + A, where 
f2 + m 2 + n2 = 1, and f, m, n, and A are (real) constants. 

Case (b): s = 00, r finite, N = 1, V 2V = 0: By Eq. (2.1) 
we have aa = - rna and D/3 = O. Thus, Daff = 0, which im­
plies aaff = (r{Jlr)aa' and so a/3,ao /3 = O. It follows that 
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K = (ap·ap)1/2 depends on/3 only, and so by redefining/3 we 
can arrange for K = I. Then app·n = (ap .n),9 - ap '0,9 = 0, 
a,8,8·au = (a,8'8u ),9 - a,8·aa,9 = 0, and a,9,9·a,9 = ~(a,9.ap)p 
= 0, i.e., app = O. Ajortiori, apPa = aaPP = 0, and so r,9poa 
= O. Now Da ;;60, for otherwise, as shown in the proof of 

Theorem (3.1) of Ref. 1, Oa = op = 0 implies that the equi­
potentials are planes and r = 00, a contradiction. Conse­
quently, rp,9 = O. Moreover, (a la/3) (aa·aa)1!2 
= (aa,aa) -112 (au .aa/3) = (r,8lr) (aa·aay!2, and so 

rp v vrp 
Hf3 = - (aa ·aa)l!2 (1 - -) + - (a .a )112 

r r r a a 

r 
= ..!!.. (aa·aa)1!2, 

r 

which implies 

Hpp = (rpf3lr) (aa·aa)1!2 - (rj,lr) (aa·aa)1/2 

+ (~/r)(aa·aayl2 = o. 
This is the necessary and sufficient condition that the sur­
faces I v = constant 1, in the metric induced by Eq. (2.2), 
should be fiat, i.e., of zero total curvature. Thus, the equipo­
tentials are "developable surfaces" and so v(x,y,z) satisfy 

I Vxx v xy Vxz vxl 
v xy Vyy Vyz Vy 

=0. 
VZZ Vyz VZZ V z 

(2.4) 

Vx Vv V z 0 

Furthermore, since (VV)2 = 1, it follows that 

Vx Vxx + Vy v xy + VzVXZ = 0, 

Vx v xy + Vy Vyy + Vz Vyz = 0, 

V"VXZ +vyVYZ +vzvzz =0. 

(2.5) 

Using Eqs. (2.5), elementary row operations performed on 
the determinant in Eq. (2.4) show that 

v xy Vyy vyz Vxx v xy Vxz 

Vxz Vyz v"~ Vxz Vyz v"~ 

Vx Vy V z Vx Vy V z 

Vxx v xy VXZ 

= v xy Vyy Vyz =0. (2.6) 

Vx Vy V z 

Using Eqs. (2.5), elementary column operations performed 
on the determinants in Eq. (2.6) show that 

IV
yy 

Vyz 1= !V
Xy 

v
yZ 1= !V

xy 
V

yy
! = \Vxx 

V
xz

! 

~ ~ ~ ~ ~ ~ ~ ~ 

= /Vxx 
v

xy 
/ = lVxx VXY

! = O. (2.7) 
Vxz v yZ v xy Vyy 

The interpretation of Eq. (2.7) in terms of lacobians shows 
that vx'vy , and V z are functionally dependent in pairs. In 
general (Vvx #0), this gives two simultaneous differential 
equations: 

Vy = f(vx )' (2.8a) 

Vz =g(vx )' (2.8b) 

where the functionsfand g satisfy (VV)2 = V; + j2(vx ) 
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+ g2(vx ) = 1. In the special case where VVx = 0, then 

(VV)2 = V; + V; = 1 - ~ (2.8c) 

(there is no special subcase where two of Vvx , Vvy , and VVz 
vanish, since then V x ' vY ' and V z would then all be constants, 
and the equipotentials would be planes, for which r = (0). 

Equations (2.8) are most readily solved by considering 
the general case [Eqs. (2.8a) and (2.8b)] and special case 
(2.8c) separately, employing Jacobi's method5 in each case. 
The complete integral is 

v=lx+my+nz+A, (2.9) 

where I,m,n, and A are constants and 12 + m 2 + n2 = I. 
However, such a solution corresponds to planar equipoten­
tials, where r = 00 and so is inadmissible. Singular solutions 
do not exist, since avlaA = 1, and so cannot be equated to 
zero. The general solution is found by regarding I,m,n, and A 
in Eq. (2.9) not as constants, but as functions of some par am­
eter a, viz., 

v = 1 (a)x + m(a)y + n(a)z + A (a), 

and then eliminating a between Eq. (2. lOa) and 

0= 1 /(a)x + m/(a)y + n/(a)z + A 'ea). 

(2.10a) 

(2. lOb) 

If two of 1/, m', and n/ are identically zero, then so also is the 
third, and then A (a) is constant, and r = 00, a contradiction. 
Hence, at most one of 1 /, m', and n/ is identically zero. 

Case (c): r = s(finite), N = 2, V2v#O: We shall first 
show that r is constant. By Rodrigues' formula (2.1), we find 
that aaP = apa requires r f3 aa = r a af3' Since aa ·af3 = 0, it fol­
lows that ra = rf3 = O. Hence, V2v = 2/(v - r), with r Con­
stant. The problem is now identical to Case (3.7c) of Ref. I. 
The equipotentials are spheres, and the general solution is 

v = r ± [(x - X I )2 + (y - Yl f + (z - Zl fr 12, where Xl' 

YI' and Zl are constants. 0 
Corollary: Any real nontrivial solution of the system 

(Vy)2 = Vy.Vy = f(y) , (1.1a) 

V2y = g(y) (Ub) 

is also a solution of the system 

(Vy)2 ~ Vy·Vy = f(y), 

(V2y)2 - ~(N +2)f/(y) V2y + !(N +1) [f'(y)P 

- !Nj(y)f"(y) = - NVy.V(V2y). 

(1.2a) 

(1.2b) 

Proof The proof follows immediately, using previous 
results 1 in conjunction with the proof of Theorem 2.1. 0 

Remark: A particular example of a solution in case (b) 
is provided by the case where 1 (a) = a, mea) 
= (1 - a2 

- k 2)112, n(a) = k, and A (a) = 0, where k is a 
constant satisfying -1 < k < 1. The a eliminant of Eqs. 
(2. lOa) and (2.10b) is then simply 

v = ± V (1 - k 2) (X2 + /) + kz. 

If k = 0, the equipotentials are concentric right-circular cyl­
inders whose axis is thez axis. If k #0, the equipotentials are 
parallel right-circular COnes whose common axis is thez axis. 

The equipotentials in cases (a) and (c) are identical with 
those of Cases (3.7a) and (3.7b) of Ref. 1 for the system (1.1). 
However, the set of equipotentials in case (b) (i.e., the set of 
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developable surfaces) is much larger than the set in Case 
(3.7b) of Ref. 1 (i.e., the set of cylinders). By an appropriate 
specialization ofEqs. (2. lOa) and (2. lOb), and bearing in 
mind the Corollary, it is possible to recover Case (3.7b) of 
Ref. 1, since the necessary and sufficient condition for the 
equipotentials to be concentric cylinders is that, in Eqs. 
(2. lOa) and (2. lOb ), A (a) is constant and I X l' = III'! is a 
constant unit vector, where I =(/,m,n) and I'==d I/da. This 
follows because, if the equipotentials are concentric cylin­
ders, we can, without loss of generality, take the common 
axis to be the z axis. Then v = ± (x2 + y 2)112 + D , where D 
is a constant. Now from Eqs. (2. lOa) and (2. lOb), 
Vv = (/,m,O) = (x,y,0)/(x2 + y2)lIZ. Since}ol = 1, JoI' = 0, 
where l' #0, and so l' a: (y, - x,O) and (lxl')/II'! 
= ± (0,0,1). Moreover, v = Ix + my + D~A (a) = D is 

constant. Conversely, if A (a) is constant and (IXI')/!1'1 is a 
constant unit vector [without loss of generality (0,0,1)], then 
mn' - nm' = In' - nl' = 0 and 1m' -I'm = 11'1. Ifn#O, 
then I = S (a)11 , where II is a constant vector, and 
1m' -I'm = 0, a contradiction. Thenn==O, and, sincen'==O, 
I 'mi=O. Writing a = a(l) in Eqs. (2. lOa) and (2. lOb), weob­
tain two equations from which we can determine the I eli­
minant, namely, v = ± (x2 + y2)112 + D, where D is a con­
stant, and the equipotentials are concentric cylinders. 

3. COMPLEX SOLUTIONS OF THE SYSTEM (1.2) 

In this section we extend our results to the case of com­
plex solutions of the system (l.2). The main result is now 
given. 

Theorem 3.1: Complex solutions to the system 

(Vy)2 = Vy.Vy = !(y), (l.2a) 

(VZy)z - ~(N +2)f'(y) V2y + leN +1) [f'(y)]2 

- ~N!(y)f"(y) = - NVy.V(V2y), (l.2b) 

(where N is constant) in complexified three-dimensional Eu­
clidean space can exist only when one of the following holds: 
(i)!(y)==O: Three possibilities arise: either (a) y=Yo, where 
Yo is constant; or (b) y satisfies an equation of form 
I/J(y) = I (y)x + m(y)y + n(y)z, where rf(y), I (y), m(y), and 
n(y) are arbitrary, except that 12 + m2 + n2=0 and not all of 
I,m,n are zero; the equipotentials are null planes; V2y = 0 
and N is an arbitrary constant; or (c) y is given by eliminating 
a and (J from the equations 

x = i(J sina + f-l(a,y) 

y = i(J cosa - faf-la(a,y)tana da + ao(Y) 

and 

z=(J, 

where f-l(a,y) and ao (y) are arbitrary functions. The equipo­
tentials are members of the set.Y of non planar null surfaces 
(see ITheorem 2.5); V 2y#O and N = 1; or 

(iO!(y)=i=O: Then y = Yo is a solution if and only if Yo is a 
commonrootof!(y)and(N +1) [f'(y)] 2 -2N!(y)f"(y);or 

(iii)!(y)i=o, and if v is any solution of the equation 
v' = [!(y)] -1/2, where a prime (') denotes differentiation 
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with respect to y, then 

(VV)2=VV'VV = 1 

and 

(l.2c) 

(1.2d) 

Five possibilities occur: either (a) V2v = 0 and N is an arbi­
trary constant: The equipotentials are planes, and 
v = Ix + my + nz + A, where I,m,n, and A are constants, 
and 12 + m2 + n2 = 1; or (b) V2V#O and N = 1: The equi­
potentials are the nonplanar developable surfaces, and v is 
given by the a eliminant of 

v = I (a)x + m(a)y + n(a)z + A (a) 

and 

0= I '(a)x + m'(a)y + n'(a)z + A '(a), 

where 12(a) + m2(a) + n2(a) = 1, and at most one of I '(a), 
m'(a), and n'(a) is identically zero: or (c) V2V#O and N = 2: 
The equipotentials are spheres and v = ± R + A, where 
R ==[(x - XI)2 + (y - YI)2 + (z - zl)211l2, and XI 'YI,z\> 
and A are constants: or (d) V2v = 0 and N is an arbitrary 
constant: Now v = f-ll X + f-l2Y + f-l3 Z 

+ t/J().I X + ).2Y + ).3 Z), where t/J is an arbitrary function 
satisfying t/J"=i=0, and f-ll ,f-l2,f..l3,).1,).2' and).3 are arbitrary 
constants satisfyingf-li + f-l~ + f-li = 1, 
). i +). ~ +). ~ = 0, and f-ll). I + f-l2).2 + f-l3).3 = 0, and 
not all of), I ,).2, and).3 are zero: or (e) V2y#O and N = 2. 
Now v = r(f3) ± (aF la(J), where Fand(J are given by 

F((3,x,y,z)==¢ ((3) + H(l - (J2)X + i(I + (J2)y -2(Jz] = 0, 

and the functions r(f3) and ¢ ((3) are arbitrary, except that 
r'((3)and¢ '''((3 ) are not simultaneously identically zero [Le., 
either r'((3)=I=O, or ¢ '''((3)=1=0, or both]. 

Proof: As in the proof of Theorem 2.1, it is clear that y is 
identically (complex) constant FYo if and only if 
!(Yo) = (N +1) [I'(yo) r -2Nf( Yo)!"(Yo) = 0, Le., Yo is 
a common zero off(y) and (N +1)[f'(y)]2 -2N!(y)f"(y) . 
This proves case (ii) and case (ia). 

If y is not identically constant, we observe from Eq. 
(l.2a) that the equipotential surfaces for y have null normals 
if and only if!(y) = 0, and hence if the normal to an equipo­
tential is null at one point, it is null everywhere. Consequent­
ly, either!(y)=O [cases (ib) and (ic)], or there are equipoten­
tial surfaces whose normals at each point are not null [case 
(iii)] . 

Suppose that the normals to all (sufficiently local) equi­
potential surfaces are null. By Theorem 2.5 of Ref. 1 (see Sec. 
1), the equipotentials are either null planes or they lie in the 
set .Y, and can be described by the equations 

x = i(J sina + f-l(a, y) , 

y = i(J cosa - fa f-la(a, y)tanada + ao(y) , 

z=(J . 

If the equipotentials are null planes, we must have 

(3.1) 

I/J(y) = I (y)x + m(y)y + n(y)z for some function t/J(y), and 
for functions I (y), m(y) and n(y) satisfying 12(y) + m2(y) 
+ n2(y) = O. One can readily check that (Vy)2 = V2y = 0 
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for arbitrary 1/I(r). In this case Eq. (1.2b) is satisfied for arbi­
trary constant N. If, on the other hand, the null equipoten­
tials are not planes, then, in the coordinates of Eqs. (3.1), the 
metric is ofthe form 1 

ds2 =ADa2 +2Bda dr +2Cd{3dr +Dd y, 
where A =(i{3 + J..Laseca)2 and C = C(a, r)$O. It is easily 
seen that this form guarantees that (Vr)2 = O. Moreover, 

V2r = _1_ (lnA)p = [C ({3 - iJ..La seca)] -I , 

2C 

and so 

1 
Vr·V(V2r) = - (V2r)p 

C 
= - [C({3 - iJ..Laseca)] -2 = - (V2rf. 

Consequently, Eq. (1.2b) is satisfied if and only if N = 1. 
Note that there are no restrictions on the set of null surfaces 
in Y. This completes case (i). 

It means to investigate case (iii). It is clear that when­
ever the shear tensor of the normal congruence possesses 
three linearly independent nonnull eigenvectors, we can di­
rectly generalize the arguments of the proof of Theorem 2.1, 
which concerned the real case. The only change that must be 
made is that the constants I, m, n, XI' YI' ZI> and A may now 
be complex. This completes cases (iiia-c). 

In the case where the shear tensor possesses only one 
nonnull eigenvector, there exists a single null eigenvector Ba 
which is orthogonal to n, and only one curvature line param­
eterl a. Since the equipotential surfaces are not null, it fol­
lows I that there are two families of null curves in any surface. 
One of these families is the set of integral curves ofaa . Let{3 
be a parameter for the second family, i.e., the second family 
is the set of integral curves of ap , and ap ·aa # O. We obtain 
the following generalizations of Rodrigues' formula (2.1): 

1 
ncr = - -a" (3.2) 

r 

and 

1 1 
np = - - aa - - ap , 

s r 
(3.3) 

where s = s(a, {3 )#0 is finite, and r = r(a, {3)#0 is either 
finite or infinite I . Furthermore, the metric can be put in the 
form 

ds2 = 2(aaoap) (1 - ; Yda d{3 

- 2; (aa .a(3) (1 - ; )d{32 + dv , (3.4) 

from which it follows that (VV)2 = 1 and V2v 
= 2/(v - r) (cf. Ref. 1). Thus, Vv.V(V2v) = 
-2/(v - r)2, and Eq. (1.2c) and (1.2d) are satisfied. 

We consider first the case (iiid) when r = 00. Then 
(VV)2 = 1 and V2v = 0, the solution to which I is 

v = X'~ + 1/I(xo}..) , 

where .... and}" are arbitrary constant vectors satisfying ~2 
= 1, }.. 2 = 0, }..o~ = 0, }..$O, and 1/1 is an arbitrary function 

satisfying 1/1" $0 [the case 1/1" =0 reduces this solution to that 
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of case (iiia) above]. The constant N is arbitrary. This com­
pletes case (Hid). 

There now remains only case (Hie), for which (VV)2 = 1, 
V2v = 2/(v - r), and r = r(a, {3) is finite and nonzero. In 
this case, N = 2, as follows from Eqs. (1.2d) and (3.4). More­
over, r = r( {3), as we now show. We have that a" ·a"a 
= !(aa·aa)a = 0, and so, from Eqs. (3.2) and (3.3), 

naP = n(3a <=> + a"a + (~ - ~ )aa - ~ a(3 = 0 . 

The component of this along a" yields r" = 0; hence, 
r = r({3). The method of solution to case (iiic) in Ref. 1 ap­
plies here, to the point where it is obtained that 

v= r±Fp, 

where 

F({3, x,y, z) 

(3.5) 

=r,6 ({3) + ~(1 - {32)X + ~i(l + {32)y - {3z = 0, (3.6) 

the function r,6 (f3) being completely arbitrary, and a {3 suffix 
denoting partial differentiation with respect to {3, holding X, 

y, and z constant. A direct calculation as in Ref. 1 shows that 
v, given by Eq. (3.5), satisfies (VV)2 = 1 and V2v 
= 2/(v - r), with r = r({3) arbitrary. However, we must 

still check the validity of Eq. (3.2) and (3.3). Consider the 
initial surface v = 0: 

r({3) ± [r,6 '({3) - {3x + i{3y - z] = O. 

The unit normal to this surface is 

n = Vv 

=Vr±VFp 
= (r{3 ± F{3{3)V{3 ± (- {3, i{3, -1) 

-1.G({3)-~, 
r r 

where 

G({3)== ± r{3 [ - !(1 - {32), - !(1 + {3 2), {31 

- {!r,6 "(1 - {3 2) + {3r,6 , - r,6, 

i [!r,6 "( I + {32) - {3r,6 , + r,6 ], - {3r,6 " + r,6 , } . 

Thus equation (3.2) is valid, and Eq. (3.3) holds if and only if 
- (1/s)aa = - (1/r)G'({3) - (r{3/r)n. A direct calculation 

shows that this is equivalent to the requirement 

- 1. aa = 1. {± (rppFp + rpFpp) + r,6 '''Fp + ?P}V{3. 
s r 

Since we require (1/s)#O in Eq. (3.3), it follows that r({3) 
and r,6 ({3) are restricted so that 

± (r{3(3F{3 + rpFp{3) + r,6 '''Fp + ?p #0. 

We shall show that this condition is violated if and only if 
both rp = 0 and <P '" = O. For suppose that 

± (r(3(3F{3 + r{3F{3{3) + r,6 "'F{3 + ~ = O. 

Then, 

P({3, x,y, z)_ [( ± r{3{3 + r,6 "')r,6' +?p ± rpr,6"] 

- [ ± (f3r{3{3 + r{3) + {3r,6 "']x 

+ [ ± (f3rp{3 + r{3) + {3r,6 '" ]iy 
+ [+r{3p -r,6''']z=O. 
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If Pp = 0, it follows immediately that rp = tP'" = O. If 
Pp ,£:0, the fact that (VP)2 = 0 implies P; + P~ + P; = 0 
(where suffices denote differentiation holdingp constant), 
i.e., that rpp ± tP'" = 0, and so rp ± tP " is constant. Now 
Eq. (3.7) becomes 

Pcp, x,y, z)=rp [(rp ± tP ")+ (x - ry)] = o. (3.8) 

If rp,£:O in Eq. (3.8), then rp ± tP " = ± (x - iy), and the 
fact that rp ± tP " is constant yields a contradiction. Conse­
quently, rp = 0, and then tP ,,, = O. Thus, the only possible 
case where our solution (3.5) and (3.6) fails is when rp = 0 
and tP II' = O. This exceptional case, where r is constant and 
where the function tP is of the form tP (P) = ap2 + bP + efor 
constants a, b, and e, was discussed in Ref. 1. Application of 
the prescription (3.5) and (3.6) in this particular case yields 

v = r ± {[x - (a - e)]2 + [y - i(a + c)J2 + (z - b )2}1I2, 

showing that this case reduces to that of case (iiic) above. We 
observe l that the particular (quadratic) form of the function 
tP is generated from the function tP (P)=O in Eq. (3.6) by a 
translation of the origin 

x-x - (a - c), y_y - i(a + c), z-z - b . 

This completes case (iiie), and the proof of the 
theorem. 0 

Corollary I: Any complex nontrivial solution of the 
system 

(Vr)2=vr·v r = I(r) , 

V2r=g(r) 

is also a solution of the system 

(Vr)2-Vr,Vr = I(r) , 

(V2r)2 - ~(N +2)f'(r) V2r 

+ !(N +1) [j'(r)]2 - !JVI(r)!"(r) 

= - NVr·V(V2r) . 

(Ua) 

(l.lb) 

(1.2a) 

(l.2b) 

Proof The prooffollows immediately, using previous 
results I in conjuction with the proof of Theorem 3.1. 0 

Corollary 2: 
(Vr)2=Vr·Vr = D=>(V2r)2 = - Vr.V(V2r). 
Proof If r is identically constant, the result is immedi­

ate. If r is not constant, the result follows from the proof of 
Theorem 3.1. 0 

Remark: Case (iiia) can be considered as the special 
case of (iiid) in which ","=0, and case (iiic) can be consid­
ered as the special case of (iiie) with rp==tP "'==0. It is more 
convenient to separate these cases in order to compare the 
results of Theorem 2.1 with those of Theorem 3.1. 

It is also possible to recover the complex generalization 
of Case (3. 7b) of Ref. 1 from case (iiib) of Theorem 3.1, in 
much the same way as was done in the real case following 
Theorem 2.1. The necessary and sufficient condition for the 
equipotentials to be concentric cylinders in case (iiib) in 
Theorem 3.1 is that A (a) is constant, I' is nonnull, and 
(I X 1')/ 11'1 is a constant unit vector. The prooffollows pre­
cisely as in the real case. 
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4. CHARACTERIZATION OF THE SOLUTIONS 

We shall give two characterizations of the solutions to 
the system (1.2) in terms of the imbedding of the equipoten­
tial surfaces in (complexified) three-dimensional Euclidean 
space. These two characterizations are analogous to ones 
that can be obtained for the system (1.1). 

Theorem 4.1: A family of surfaces {r = constant J is a 
set of equipotential surfaces for (nonconstant) solutions of 
the system 

(Vrf=vr,vr = I(r) (l.1a) 

and 

(Ub) 

if and only if the surfaces are orthogonal to a congruence of 
straight lines whose area expansion is constant on each 
equipotential. 

Proof We use a notation in which a semicolon denotes 
covariant derivative, indices are raised and lowered using the 
metric tensor, Greek indices denote component indices, t1). is 
the Kronecker delta tensor, and the summation notation for 
repeated indices is employed. Since t a;/3 yft = r;/3 ;ayft 
= ~(r;/3yftya = H(Vrf];a, it follows that the curves ofthe 

congruence normal to the equipotential surfaces ! r = con­
stant J are geodesics (i.e., straight lines) if and only if 
(Vr)2 = I(r) for some function/(r), i.e., ifand only ifEq. 
(1.1a) is satisfied. If v is a solution of the equation 
dv/dr = [/(r)] -112, then (VV)2 = 1 and we can decom­
pose I the term V;A;I-' as 

V;A;I-' =OAI-' =uAI-' +!OhAI" (4.1) 

where 0 AI" U AI-' ' and 0 are interpreted as the "expansion ten­
sor", the "shear tensor" and th~ "area expansion" of the 
normal congruence, respectively, and satisfy OAI-' vI' = 0, 
OAI-' =(}I'A'O~ = (},uAI'VI-'=O,uAI-' =uI-'A,and~ =O.The 
tensor hAl-' is the "projection tensor" into the tangent plane 
at each point on a surface, i.e., hAl' = OAI-' - V;A v;I-" 

hAl-' = hl'A' h ~ = 2, and hl'A h J.tT = h ;. For future reference, 
we also define the shear scalar U by 2~ = uAI-' ifl', u;;;.O. 
Thus, V2r = g(r) if and only ifV2v = h (v) for some function 
h (v), which is true if and only if(} = (}(v), since 
V2v = VA A = () . Thus, Eq. (1.1 b) is satisfied if and only if () 
is constant on each equipotential! v = constant J . The above 
decomposition is analogous to that employed in the pseudo­
Riemannian manifolds of general relativistic cosmology 
(see, for example, Ref. 6). 

If l(r)=O, the equipotential surfaces are null. Again, 
the curves of the congruence normal (and hence tangent) to 
the equipotential surfaces are geodesics (i.e., straight lines). 
The quantity r;A;1-' can be decomposed into its trace and tra­
cefree parts as 

r;A;1' = (}AI-' = uAI' + (}hAI-' ' (4.2) 

where in this case the interpretations of () AI-" U AI-" and () for 
the normal congruence are the same as before [for the case 
f(r)=i=O], but hAl-" while still being a projection tensor ortho­
gonal to r;Jt' is now degenerate, since h AI' ~ = 0 and 
r;l-'tl-'=O.Thus,hAI-' =hl-'A,h~ = l,andhI'AhI'T=h;.The 
proof of the theorem in this case [f(r)=O] now follows as in 
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the case where !(y)=i=O. 0 
Theorem 4.2: A family of surfaces { y = constant J is a 

set of equipotential surfaces for (nonconstant) solutions of 
the system 

(Vyf=Vy.Vy = !(y) (Lla) 

and 

(Ub) 

if and only if the surfaces are orthogonal to a congruence of 
straight lines and have constant (possibly infinite) principal 
radii of normal curvature. 

Proof This theorem is merely a restatement of Theorem 
(4.2) in Ref. 1. 0 

Two corresponding characterizations for the system 
(1.2) are given in the next two theorems. 

Theorem 4.3: A family of surfaces! y = constant) is a 
set of equipotential surfaces for (nonconstant) solutions of 
the system 

(Vy)2=Vy.Vy = !(y) , 

(V2yf - ~(N +2)!,(y) V2y 

+ !(N +1) [!'(y)]2 - !N!(y)!'(y) 

= - NVy.V(V2y) 

(1.2a) 

(1.2b) 

(where N is constant) if and only ifthe surfaces are ortho­
gonal to a congruence of straight lines whose shear scalar (7 

and area expansion () are related by 

2N(l +E)~+(N-1-E)()2=0, 

where E = 0 for null equipotentials, and E = 1 for nonnull 
equipotentials. 

Proof As in the proof of Theorem 4.1, it follows that the 
curves of the congruence normal to the equipotential sur­
faces are geodesics (Le., straight lines) if and only if Eq. 
(1.2a) is satisfied. 

If the case !(y)=I=O, we consider the variable v(y), being 
a solution of the equation dv/dy = [!(y)] -1/2, and 
satisfying 

(Vy)2=VV'VV = 1 (1.2c) 

and 

(V2V)2 = - NVv.V(V2v) . (1.2d) 

N . A·I-' .1-'.'" ( "1-').", .... .1-' ow v;"';/l v' = v;"';/l V' • = v;"';/l V' ' - v;"';/l' V' 

= - (v; ... ;'" );/l vI-' = - Vv·V(V2v), recalling that 
v;"';/l v/l = O. It follows from Eq. (4.1) that Vv·V(V2v) 
= - !(4~ + () 2), Thus, Eq. (1.2d), and hence Eq. (1.2b), is 

satisfied if and only if 4N~ + (N -2) () 2 = O. 
If !(y)=O, Eq. (1.2b) is satisfied if and only if 

2N~ + (N -1) () 2 = 0, where we have used thedecomposi-
tion (4.2). 0 

Corollary: If a set of surfaces is orthogonal to a congru­
ence of straight lines whose area expansion () is constant on 
each surface, the shear scalar (7 is related to () by the equation 

2N(1 +E)~+(N-I-E)()2=O, 

where N is a constant, E = 0 for null surfaces, and E = 1 for 
non null surfaces. 

Proof This follows upon application of Theorems 4.1 
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and 4.3, the Corollary of Theorem 2.1, and Corollary 2 of 
Theorem 3.1. 0 

Remark: The expansion () and shear scalar (7, have been 
evaluated for each class of nontrivial solution given in Theo­
rems 2.1 and 3.1. Whether or not they vanish identically is 
indicated in Table I. 

Theorem 4.4: A family of surfaces {y = constant J is a 
set of equipotential surfaces for (nonconstant) solutions of 
the system 

(Vy?-Vy.Vy = !(y) , 

(V2y)2 - !(N +2)!,(y) V2y 

+ !(N +1) [!'(y)]2 -!N !(y)!'(y) 

= - NVy.V(V2y) 

(1.2a) 

(1.2b) 

if and only if the surfaces are orthogonal to a congruence of 
straight lines and either have zero total (Gaussian) curvature 
or have nonzero total (Gaussian) curvature but equal finite 
principal radii of normal curvature. 

Proof We have already seen in the proof of Theorem 4.1 
that the surfaces are orthogonal to a congruence of straight 
lines if and only if Eq. (l.2a) is satisfied. 

Suppose that Eq. (1.2) are satisfied. If the equipotentials 
are not null and the shear tensor possesses three linearly 
independent nonnull eigenvectors [case (iii) of Theorem 2.1 
and cases (iiia-c) of Theorem 3.1], it follows that the total 
curvature is zero, unless the principal radii of curvature r 
and s are finite and equal, in which case they are constant, 
and hence so is the total curvature. If the equipotentials are 
not null and the shear tensor possesses only two linearly 
independent eigenvectors [cases (iiid) and (iiie) of Theorem 
3.1], it follows from Eq. (3.2) and (3.3) that the principal 
curvatures are equal (taking the value 1Ir). If r is infinite, 
then the total curvature is zero. If r is finite, r is an arbitrary 
function of the variable p. While the total curvature is vari­
able, this occurs only if the two principal radii of curvature 
are equal and finite. Finally, if the equipotentials are null, 
then the total curvature is necessarily zero (principal radii of 
normal curvature P! and P2' can be defined for a null sur­
face!; the "generalized total curvature" l/P!P2 = 0 for all 
null surfaces). 

Conversely, suppose that a set of surfaces {y = con­
stant) is orthogonal to a congruence of straight lines [so Eq. 
(1.2a) is satisfied], and that the surfaces either have zero total 
curvature, or have nonzero total curvature with equal finite 
principal radii of curvature. If the surfaces are not null and if 
the shear tensor of the normal congruence has three linearly 
independent eigenvectors, the result follows immediately, by 
the proofs of Theorems 2.1 and 3.1. If the surfaces are not 
null and the shear tensor of the normal congruence possesses 
only two linearly independent eigenvectors, the principal 
radii of curvature are equal, by Eqs. (3.2) and (3.3). Again 
the result follows from the proofs of Theorems 2.1 and 3.1. 
Finally, if the surfaces are null, then !(y)=O, and we see 
from the proof of cases (ib) and (ic) in Theorem 3.1 that Eq. 
(1.2d), and hence Eq. (1.2b), is satisfied. 0 

Corollary: If a set of surfaces is orthogonal to a congru­
ence of straight lines, and if the surfaces have constant (pos­
sibly infinite) principal radii of normal curvature, then they 
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either have zero total (Gaussian) curvature, or have nonzero 
total (Gaussian) curvature but equal finite principal radii of 
normal curvature. 

Proof This follows either from previous results I or from 
an application of Theorems 4.2 and 4.4, the Corollary of 
Theorem 2.1, and Corollary 2 of Theorem 3.1. 0 

5. CONCLUSION 

We have exhibited all compatible real or complex solu­
tions of the system 

(V'y)2=Vy.Vy = !(y) , (l.2a) 

(V'2y)2 - !(N +2)f'(y) V2y 

+ !(N +1) [f'(y)P - !N!(y)f'(y) 
= - NVy.V(V2y) . (1.2b) 

An interesting relationship was discovered in Theorem 4.4 
between the nontrivial solutions (r=i=constant), and the set 
of surfaces whose total curvature is zero, or whose total cur­
vature is nonzero and whose principal radii of curvature are 
equal (and finite). An alternative characterization was given 
in Theorem 4.3, involving the shear and expansion scalars of 
the normal congruence of a set of surfaces. We have also 
shown that every solution of the system 

(Vy)2=Vy'Vy = f(y) , 

V2y =g(y) 

( 1.1a) 

(l.Ib) 

studied previously I is also a solution of the system (1.2), but 
that the converse is false, so our present results represent a 
generalization of the previous work. Normalizing !(y) so 
that !(y) = I in the case where !(y)i=o, we can conclude by 
taking real and imaginary parts of Eqs. (1.2) that we have 
obtained all solutions to the real set of equations 
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(VX)2 _ (Vy)2 = £, 

VX.VY=O, 

(V2X)2 _ (V2 Y)2 
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and 

2V2XV2y = - N {VX.V(V2Y) + VY.V(V2X)! , 

where £ = 0 or 1, and N is a constant. The results are con­
tained in Theorems 2.1 and 3.1, and summarized in Table I 
of Sec. 1. 

The results of the present article have been applied to a 
discussion of null surfaces in Minkowski space-time and its 
complexification. This discussion will appear in a subse­
quent article. Moreover, there are questions in classical 
physics which do not appear to have been previously exam­
ined, and which are readily answered using the present for­
malism. For instance, in electrostatics, one could ask for 
what distributions of charge are the charge density and the 
(magnitude of the) electric field constant on the equipoten­
tial surfaces? (The answers to this question are "for planar, 
cylindrically symmetric, and spherically symmetric distri­
butions only.") Such questions are currently being 
investigated. 
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We obtain a number of results on null geodesic congruences in Minkowski space-time M. It is 
first shown that the only time-invariant hypersurface-orthogonal shear-free null geodesic 
congruences in M are those that generate either null hyperplanes or null cones. This result is 
derived in two interesting and quite distinct ways. One method of proof uses Kerr's theorem. The 
other method proceeds by showing that the equations specifying the class of congruences can be 
written in the form (\7YY=\7Y'\7Y = 1, and (\72y)2 = - 2\7Y'\7 (\72y), where Y is a 
potential and the operators \7 and \72 refer to 3-dimensional Euclidean space. The complexified 
version ofthis system of equations has been studied previously by the author [preceding paper, J. 
Math. Phys. 21, 240 (1980)]. Hypersurface-orthogonal shear-free null geodesic congruences in 
complexified Minkowski space-time are then investigated, and a close association is discovered 
between the set of such congruences and the set of (generally, non-hypersurface-orthogonal) 
shear-free null geodesic congruences in M. 

1. INTRODUCTION 

In this article, we shall study shearfree null geodesic 
congruences in real Minkowski space-time M and in its 
complexification M·. In Sec. 2, we show that the only time­
invariant hypersurface-orthogonal shearfree null geodesic 
congruences in M are those which (locally) generate either 
null hyperplanes or null cones, and we obtain, as an elemen­
tary consequence, the result that the only null hypersurfaces 
in M whose null generators are shearfree are either null hy­
perplanes or null cones. While this last result appears to be 
well known, there is, as far as the present author is aware, no 
well-known standard reference to it (cf. the comments in 
Ref. 1). Furthermore, we shall derive our results in two in­
teresting and quite distinct ways. The first method will be to 
show that the equations specifying the class of congruences 
in question can be written in the form 

(VyY=Vy.Vy = 1 (l.1a) 

and 

(l.1b) 

where y is a (real) potential, and the operators V and V2 refer 
to (real) three-dimensional Euclidean space. This system is a 
specialization of that investigated in Theorem 2.1 of Ref. 2, 
and so the solutions can readily be found. The fact that the 
potential y is time independent reflects the time-in variance 
property of the congruence. Equation (l.la) can be regarded 
as a statement that the hypersurface-orthogonal congruence 
is null, and Eq. (1.1 b) is a statement that the shear of the 
congruence vanishes. 

The second method of proving the result of Sec. 2 uses 
Kerr's theorem in conjunction with a result obtained in the 
proof of Theorem 3.1 in Ref. 3. We shall consider the metric 
of Minkowski space-time in Cartesian-like coordinates 
(t,x,y,z), viz., 

(1.2) 

It will also be convenient to express relationships in terms of 
a set of complex null coordinates (u,v,sl), defined by 

1 1 
u = ~z + t), v = ---=(z - t ), 

Y2 Y2 
S = .. ~_(x + (y), t = ~x - iy), (l.3a) 

V 2 Y2 
1 1-

<;=::?t = .. r(u - v), x = ---=(S + S), 
V 2 Y2 

- i-I 
y = Y2(S - S), z = Y2(u + v). (l.3b) 

In this second set of coordinates, the metric (1.2) becomes 

ds2 = 2 du dv + 2 ds df (1.4) 

Kerr's theorem4-8 states that in Minkowski space-time the 
most general analytic shearfree (future pointing, affinely 
parametrized) null geodesic congruence k is given by 

either 

k = kadx" = - (du + Yd ~ + Yd~ - YYdv), (l.5a) 

or 

k = kadxa = dv, (1.5b) 

where Y is a complex function of the coordinates, defined 
implicitly by 

F==F(Y,u + Y;'s - Yv) = 0, (l.5c) 

with F an arbitrary complex analytic function of its three 
arguments. If we make the further demand that the congru­
ence be time-invariant and hypersurface-orthogonal, we re­
cover the required result. 

We can also examine "time" -invariant hypersurface­
orthogonal shearfree null geodesic congruences in complexi­
fied Minkowski space-time M· (e.g., see Refs. 7-9) by com­
plexifying the analysis that led to Eq. (1.1). The complex 
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version of Eq. (1.1) is a specialization of those investigated in 
Theorem 3.1 of Ref. 1, and the solutions can be readily 
found. This is done in Sec. 3. In addition to the complex 
generalizations of the null hyperplanes and the null cones 
obtained in the real case, there are more complicated sets of 
hypersurfaces which are not admitted in the real case. Fur­
ther study shows that when the normals to these hypersur­
faces are expanding, they are quite naturally related to a 
class of (generally, non-hypersurface-orthogonal) time-in­
variant expanding shearfree null geodesic congruences in 
real Minkowski space-time M. 

It should be noted that our discussion is intended to 
study local properties of congruences. It is to be understood 
that our results may be valid only locally, and that separate 
qualifications to this effect will not be given. 

2. NULL CONGRUENCES IN MINKOWSKI SPACE-TIME 

If a vector field k is everywhere tangent to a null geode­
sic congruence, affinely parametrized so that lO 

ka'b k b = 0, 

then there is a decomposition of ka;b in terms of certain phys­
ically relevant quantities (e.g., Ref. 11): 

ka;b = (Jab + Wab' 

where (Jab = (J(ab) = k(a;b) is the "expansion tensor" and Wab 
= Wlab J = k1a;b J is the "vorticity tensor." The expansion 

tensor can be further decomposed into its trace and tracefree 
parts: 

(Jab = O'ab + !(Jhab , 

where (J = (J ~ = k ~a is the "expansion scalar," O'ab = O'(ab) 
= k(a;b) - !k ~chab is the "shear tensor," and hab is a (degen­

erate) projection tensor into the space H orthogonal to (and 
hence containing) k. As in Ref. 11, we will be primarily con­
cerned with projections into the space S, which consists of 
equivalence classes of vectors in H that differ only by multi­
ples ofk. In this case, given a null vector I statisfying k·I¥O, 
there is a unique projection tensor hab with the properties hab 
= h(ab)' habX bE S for all vectors X, and habX b = Xa for all 

XE S. The null geodesic k congruence is hypersurface ortho­
gonal if and only if k1a;b kc J = ° ~ W = 0, where 
2w2=wabWab = k1a;b Jk a;b = 0, and is shearfree if and only if 
0'= 0, where a is the "shear scalar," given by 2~=O'abifb 
= k(Q;b)k a;b - !(k ~a)2, 0';;.0. We note that the condition 

O'ab = ° is not invariant, since it depends on the choice of hab' 
which in turn depends on the choice of the null vector l. 

We note in passing that ifk is tangent to a (affinely 
parametrized) null geodesic congruence, then so also is/k, 
where/is constant along each curve of the congruence. If, 
moreover, the k congruence is shearfree or hypersurface­
orthogonal, then so also is the/k congruence. Furthermore, 
if the k congruence is hypersurface-orthogonal, there exists 
an/k congruence whose vorticity tensor vanishes. 

Given any Killing vector ~, a null geodesic congruence 
with tangent vector k is "invariant under the action of~" if 
and only if 
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xsk = O<===?[s,k] = O~ka;bSb - Sa,bk b = 0. 
(2.1) 
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Lemma 2.1: Any null hypersurface in Minkowski 
space-time is generated by a (unique) null geodesic 
congruence. 

Proof Let g(t,x,y,z) = ° be the equation of the null hy­
persurface. Then, defining k to be the gradient of g, we have 
ka = g;a' where 

kak a = ~g,ag'a, and k[Q;b J = ~gLa;b J = 0. 

Extending the gradient vector field to obtain a null vector 
field k defined in a neighborhood of the hypersurface, we see 
that ka k Q = O=>ka;b k a = 0. Thus, on the hypersurface, 
kh;a k Q = 0, and so the integral curves ofk form a (hypersur­
face-orthogonal) null geodesic congruence in the 
hypersurface. 

Since the vector k is orthogonal to any vector v tangen­
tial to the hypersurface at a point P, it follows that v is either 
null or spacelike, and that, if v is null, it is parallel to k at P. 
This property holds at all points P of the hypersurface. Con­
sequently, if a second null congruence K generates the hyper­
surface, then Ka = / ka for some nonzero function/, and 
Ka;bKb = (Ibk b)Ka' i.e., the integral curves of K form a (gen­
erally, non-affinely parametrized) null geodesic congruence 
which coincides with that of the integral curves ofk. D 

Remark: We will say that a null hypersurface 
g(t,x,y,z) = ° in Mis "shearfree" if an affinely parametrized 
null geodesic congruence that generates it is shearfree, i.e., 
g;a,bg'a;b = !(i;~)2 on the hypersurface. By Lemma 2.1, we see 
that there is an affinely parametrized null geodesic congru­
ence generating every null hypersurface, and by the proof of 
Lemma 2.1, and the remarks preceding it, we see that the 
definition is independent of which particular affine parame­
trization is used. We will be particularly concerned with (hy­
persurface-orthogonal shearfree null geodesic) congruences 
that are invariant under the action of a timelike translational 
Killing vector (cf. Ref. 4). For brevity, such congruences will 
be termed "time-invariant." Not every time-invariant shear­
free null geodesic congruence in M is necessarily hypersur­
face orthogonal, as we will show in the proof of Theorem 2.2. 

Theorem 2.2: Let k be a vector field everywhere tangen­
tial to a time-invariant hypersurface-orthogonal shearfree 
null geodesic congruence in Minkowski space-time. Then 
there is a system of "Cartesian" coordinates (t,x,y,z) such 
that k is orthogonal to (and hence generates) the family of 
null hypersurfaces 1 t - q(x,y,z) = constant l, where either 
(i) q = Ix + my + nz + A, with l,m,n, and A constants satis­
fying 12 + m 2 + n 2 = 1: in this case, the expansion scalar 
vanishes, and the hypersurfaces are null hyperplanes; or (ii) 
q = ± [(x - x 1 null cones. 

Proof Without loss of generality, the k congruence is 
affinely parametrized. Suppose that this congruence is invar­
iant under the action of a timelike translational Killing vec­
tor~. We can choose coordinates (t,x,y,z) in Eqs. (1.2) such 
that ~ = a/at. By the proof of Lemma 2.1, there is a real 
function g(t,x,y,z)=j=O such that ka = g;a' Moreover, by Eq. 
(2.1), g;a;bS b = 0. This implies that there is a constant b and a 
real function Q (x,y,z) such that 

g(t,x,y,z) = bt + Q (x,y,z). (2.2) 

The condition that k is null may be written in the form 
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ka k a = <X:==>g;aga = <X:==>(VQ )2==VQ.VQ = b 2, 
(2.3) 

where V is an operator in the three-dimensional Euclidean 
space [t = constant j. The expansion scalar Oof the k con­
gruence is 

o = k~a =t;: = V 2Q, (2.4) 

and the shear scalar 17 is given by 

if - Ik ka;b _1(ka)2 - '2 (a;b) 4;a 

= ! [2g;a;bg;a;b _ (g;:)2] 

= - H(V2Q)2 + 2VQ.V(V2Q)], (2.5) 

where the operators V and V2 act in the three-dimensional 
Euclidean space [t = constant j. 

Thus, from Eqs. (2.3) and (2.5), any time-invariant hy­
persurface-orthogonal shearfree null geodesic congruence in 
Minkowski space-time can be associated with the solution Q 
to the following system of potential equations: 

(VQ)2=VQ.VQ = b 2 (2.6a) 

and 

(2.6b) 

where b is a constant. Since Q is real, the case b = 0 would 
require that Q be zero, and then, from Eq. (2.2), we obtain 
g=O, which is inadmissible. Consequently, b :;;i:0 in Eq. 
(2.6a). 

The system (2.6) is a particular case of the system of 
potential equations (1.2) previously investigated. 2 The gen­
eral solution is therefore obtained by writing q = Q Ib and 
employing Theorem 2.1 of Ref. 2, and the theorem is proved. 

o 
Corollary 1: In Minkowski space-time, any time-invar­

iant hypersurface-orthogonal shearfree null geodesic con­
gruence can be associated with a family of equipotentials in 
three-dimensional Euclidean space. In case (i) of Theorem 
2.2, these equipotentials are planes (the principal curvatures 
are zero; the normal geodesic congruence satisfies 0 = 17 

= 0), and in case (ii) they are spheres (the principal curva­
tures are equal and nonzero; the normal geodesic congru­
ence satisfies (j :;;i:0 = (7). 

Proof This follows immediately from Table I of Ref. 2. 
We note that the quantities (j and 17 refer both to the space­
time congruence and to the auxiliary congruence of rays 
orthogonal to the equipotentials in Euclidean space. 0 

Corollary 2: In Minkowski space-time a null hypersur­
face H is shearfree if and only ifit is either a null hyperplane 
or a null cone. 

Proof Suppose His shearfree. We consider Minkowski 
space-time M with coordinates (t,x,y,z) of metric (1.2), and 
construct a family of hypersurfaces H (v) parallel to H as 
follows: 

H (v) = [(t,x,y,z)E M I (t - v,x,y,z)E H j, 

where v is a parameter that is constant on each surface, and 
H (0) = H. We suppose that H is given by the equation 
g(t,x,y,z)=t - f(x,y,z) = O. Clearly, for each v, the null geo­
desic generators of H (v) are parallel to those of H, and are 
shearfree. We now ha ve a shearfree null geodesic congruence 
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defined throughout M. This congruence is time-invariant, 
since .Y s k = 0, where S = a I at and ka = g;a' the function g 
here being get - v,x,y,z), whose vanishing specifies the hy­
persurface H (v). By Theorem 2.2, this congruence is ortho­
gonal to (and hence generates) a system of hyper surfaces 
which are either null hyperplanes or null cones, i.e., the fam­
ily H (v) is a system of either null hyperplanes or null cones, 
and, afortiori, H = H (0) is either a null hyperplane or a null 
cone. 

Conversely, given any null hyperplane or null cone, it is 
clear by direct calculation that its null geodesic generators 
are shearfree. 0 

There is an alternative proof of Theorem 2.2, which 
uses Kerr's theorem.4

-
8 This proof will now be given. 

Alternative Proof of Theorem 2.2: Kerr's theorem states 
the form of the most general analytic (future-pointing affine­
ly parametrized) shearfree null geodesic congruence in M 
[see Eq. (1.4) and (1.5)]. 

IfEq. (1.5b) is obeyed, i.e., ifk = dv, then the vector 
field k is clearly orthogonal to the hyperplanes [ t - z = con­
stant j. These intersect the hypersurfaces [ t = constant J in 
the planes [z = constant J. 

If, on the other hand, Eq. (1.5a) is obeyed, i.e., if 
k = - (du + Yd ~ + Yd~ - YYdv), then k is hypersurface­
orthogonal if and only ifkAdk = 0, which is equivalent to 
the following set of conditions: 

and 

YYv - YYv + Y(YY)f - Y(YY)f = 0, 

Yv + (YY)f - Y(YY)u + YYYu = 0, 

Yv + (YY\. - Y(YY)u + YYYu = 0 

Yf - Yb' + YYu - YYu = 0, 

(2.7a) 

(2.7b) 

(2.7c) 

~here a suffix denotes partial differentiation. Forming 
y xEq. (2.7b) - Y XEq. (2.7c) and usingEq. (2.7a), we find 
that 

(2.8a) 

Consequently, either Y=O, or Y¥=O and YJY = YJy' In 
either case, Eq. (2.7d) shows that 

Yb' = Yf· (2.gb) 

Recalling that Y is defined implicitly by the relation 

F(y,xl ,x2) = 0, (2.9) 

whereXI ==U + Y( andX2 =t - Yv, we find that Yf = YYu 

= - ~Fx/Dand Yv = - YYb' = YFx,/D, whereD=Fy 
+ FxJ - Fx,v¥=O. Direct substitution of these relations 
into Eqs. (2.7) shows that they are identically satisfied if and 
only ifEq. (2.8) hold, i.e., ifand only if either Y =0, or Y¥=O 
and both F x/ YD and Fx,/ D are real. Moreover, we find that 
k is invariant under the timelike translational Killing vector 
S = a lat if and only if ay lat = ~nce Yugenerates) the 
hyperplanes [z + t = constant}. These intersect the hyper­
surfaces [t = constant) in the planes [z = constant) . 

Now suppose that Y¥=O. If Fx, =0, then F x, =0 and Eq. 
(1. 5c) requires that Yis identically constant. In this case, k is 
orthogonal to (and hence generates) the hyperplanes 
[u + Yt + yt - YYv = constant) . These intersect the hy­
persurfaces [t = constant} in the planes! (Y + Y)x 
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- ICY - Y)y + (I - YY)z = constant). If Fx,=I=O, then, 
without loss of generality, we can arrange for Fin Eq. (1.5c) 
to be of the form F = G (Y ,x) - X2, where G is an analytic 
function of Yand XI ; in other words, without loss of general­
ity, Fx , = - 1. Now Gx • = Y, and Gy + ytis real. Thus, G 
is of the form G (y,xl) = XI Y - (V2)<,6 (y), where <,6 (Y) is 
such that D = XI - (V2)<,6 '(Y) + Yt + v is real. In this 
case, using Eqs. (1.3), Eq. (1.5c) can be written as 

1 -
- yzF(Y,u + y;,s- - Yv)=H(Y,x,y,z) 

==-<,6 (y) + !(1 - y2)X + !i(1 + y2)y - Yz = O. (2.10) 

We require all functions <,6 (Y) in Eq. (2.10) with the property 
that H y = H y(x,y,z) = <,6 '(Y) - Y (x - iy) - z is real. This 
problem can be readily solved when we observe that Eq. 
(2.10) is the same as Eq. (4.5) of Ref. 3. The analysis subse­
quent to Eq. (4.5) of Ref. 3 now applies, and we can therefore 
deduce that H y satisfies 

(VHyf = 1 (2.11a) 

and 

(2.11b) 

where H y is real. Equations (2.11) are a special case of the 
system discussed in Theorem 3.1 of Ref. 3, and it follows that 
the general solution is 

H y = ± [(X_X I)2+(Y_YI)2+(Z_ ZI)2]1I2+A, 

where XI' YI' Zl' and A are constants. Since the normals to 
the equipotential surfaces {H y = constant J possess a shear 
tensor which has three linearly independent eigenvectors, it 
follows2

.
3 that <,6 "'(Y) = 0, i.e., that <,6 (Y) is ofthe form 

<,6 (Y) = a + bY + c, y 2for constants a, b, and c. This func­
tion is generated from <,6 (Y)=O in Eq. (2.10) by the shift of 
origin x-x - (a - c),y_y - i(a + c), and Z_Z - b. In or­
der to determine the hypersurfaces generated by k, it is 
thereforesufficienttoput<,6 (Y) = OinEq. (2.10), which then 
implies 

Y= -z+r, r=(xz+yz+zzy!2. 
x -iy 

Employing Eq. (1.5a), a direct calculation, given in the Ap­
pendix, shows that ka =/g;a' whereg =g[[(u - v)/V2] 
± [2s-t + !(u + V)2]1I2) = g(t ± r), and [1 ± (z/r)] 
X/g'(t ± r) = - V2 (note that/is constant along the gen­
erators k in keeping with our earlier remarks). Thus, k gener­
ates the hypersurfaces [t ± (x2 + y2 + ry12 = constant) , 
i.e., a family of null cones whose vertices lie on the taxis. 
Now invoking the allowed shift of origin, we see that the 
general family consists of null cones whose vertices lie on a 
line [(xo ,yo,zo) = constant}, where Xo = (a - c), Yo 
= i(a + c), and Zo = b are arbitrary real numbers, i.e., b is 
an arbitrary real constant and a = cis an arbitrary complex 
constant. These cones intersect the hypersurfaces {t = con­
stant} in spheres centered on (xo ,yo,zo)' 0 

Remark: These results are consistent with those of 
COX,4 who has derived expressions for the most general ana­
lytic shearfree null geodesic congruence k in Minkowski 
space-time that is either (i) invariant under the action of a 
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translational Killing vector a fat or (ii) invariant under the 
action of a spacelike rotational Killing vector x(a/ay) 
- yea/ax), or (iii) both (i) and (ii). Unfortunately, there are 

errors in these expressions. In our notation, Cox has shown 
that in case (i) (Theorem I of Ref. 4), k is given by k = dvor 
k = - (du + Yd ~ + Yd~ - YYdv), where Yis an arbitrary 
complex function of S- - Yv - Y (u + Y~\ in which case it is 
concluded that there is an analytic function <,6 (Y) such that 
<,6 (Y) + (l/V2)(S - Yv) - (l/V2)Y(u + yt) = 0. Howev­
er, the case where Y is identically constant appears to have 
been overlooked. Similarly, in case (iii) (Theorem III of Ref. 
4), we have either k = dv or k = - (du + Yd ~ + Yd~ 
- YYdv), where Yis a complex function of the coordinates, 

defined implicitly by F(Y,u + Yt,(; - Yv) 
= - iaY + (l/V2)(S - Yv) - (l/V2)Y(u + Yt) = 0, 
where a is real, together with the additional possibility that Y 
could vanish identically. We see from Eq. (2.10) that if in 
addition the congruence is hypersurface orthogonal, then it 
is given by either k = dv or k = - du, or a = O. It is well 
known in the theory of Kerr-Schild space-time (e.g., Refs. 
6,12, and 13) that, when considered with respect to an auxil­
iary null geodesic congruence in Minkowski space-time, the 
case a #0 generates the Kerr l4 solution, and the case a = 0 
specializes the solution to that of Schwarz schild. The param­
eter a is interpreted as the angular momentumlunit mass, 
and there is thus a close connection between the two hyper­
surface-orthogonality properties in the curved Kerr-Schild 
space-time and in the auxiliary flat space-time. In fact, 
Newman and Winicour l have already obtained a result to 
this effect. They show that the "Kerr congruence" [i.e., the 
shearfree null geodesic congruence generated in the case 
whenF(Y,u + Y;,s-- Yv) 
= - iaY + (lIV2)(S - Yv) - (l/V2)Y(u + Yt) = 0, 

where a is real] can be interpreted as a complexified version 
of the "Schwarzschild congruence" (i.e., the special case 
when a = 0). This is also apparent from our discussion 
above. 

3. COMPLEX MINKOWSKI SPACE-TIME 

In this section, we examine the complexification of our 
results, and discover a close relationship between time-in­
variant shearfree null geodesic congruences in real Min­
kowski space-time M and "time" -invariant hypersurface­
orthogonal shearfree null geodesic congruences in complexi­
fled Minkowski space-time M * . We allow the coordinates 
(t,x,y,z) of Eqs. (1.2) to take complex values. In this case, S­
and t as defined by Eqs. (1.3) are no longer complex conju­
gate. Null congruences and null hypersurfaces are defined as 
direct generalizations of their real counterparts, where the 
property of being null is with respect to the (complex, non­
Hermitian) metric given by Eqs. (1.2). A congruence with 
tangent vector k will be called' "time" -invariant' ifthere is a 
nonnull translational Killing vector ~ such that :£ ~ k = 0 
(cf. Eq. (2.1)]. Since s·s is a (complex) nonzero constant, ~ 
may be rescaled so that S·s = - 1, and there is then a co­
ordinate system (t,x,y,z) such that S = a lat. 

Lemma 2.1 generalizes from M to M *, to the extent that 
any null hypersurface in M * is generated by a null geodesic 
congruence. However, this congruence is no longer unique. 
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For instance, the hypersurface t = x is generated by a set of 
vectors 8 ~ + 8 ~ , and also by a set of vectors 8~ + i8~ . 

Theorem 2.2 generalizes as follows. 
Theorem 3.1: Let k be a vector field everywhere tangen­

tial to a "time" -invariant hypersurface-orthogonal shearfree 
null geodesic congruence in complexified Minkoski space­
time. Then there is a system of "Cartesian" coordinates 
(t,x,y,z) such that k is orthogonal to (and generates) the fam­
ily of null hypersurfaces {Et - q(x,y,z) = constant I, where 
either(i)E = I andq = Ix + my + nz + A, with/,m,n, and A 

complex constants satisfying 12 + m 2 + n2 = I; in this case 
the expansion scalar vanishes and the hypersurfaces are null 
hyperplanes; or (ii) E = I and q = ± [(x - X I )2 + (y - YI)2 

+ (z - Zl )2]1/2 + A, with XI ,YI ,Zl' and A complex con­
stants; in this case, the expansion scalar is nonzero and the 
hypersurfaces are null cones; or (iii) E = I and q = III X 

+ Ilzy + 1l3 Z + tP(A I X + A2Y + A3z), with tP arbitrary, 
tP"-¥=O, and withlll ,Ilz ,1l3' ..1,1,..1,2' andA3 complex constants 
satisfying,ui + Il~ +,u~ = I, A i + A ~ + A ~ = 0, Allll 
+ A2,u2 + A 3113 = 0, and A I ,..1,2' and A 3 are not all zero; in 

this case the expansion scalar is zero, but the hypersurfaces 
are not null hyperplanes; or (iv) E = I and q = (JF IJ/3) 
+A (/3), whereF(/3,x,y,z) ¢(/3) + ~[(l_(J2)X 
+ i(l + (J 2)y -2(Jz = 0; A «(J) and ¢ «(J) are arbitrary, ex­

cept that A '( /3) and ¢ m( /3) are not simultaneously zero; or 
(V)E = 0 and tP(q) = I (q)x + m(q)y + n(q)z, where tP, I, m, 
and n are arbitrary, with [2 + m Z + nZ = 0 and I,m, and n 
are not all zero; or (vi) E = 0 and q is the (a,/3) eliminant of 

x = i/3 sina + Il(a,y), 

y = i/3 cosa - fa Ila (a,y) tanada + a o (y), 

and 

z=/3, 

where Il(a,y) and ao(y) are arbitrary functions. 
Proof The argument in the proof of Theorem 2.2 gener­

alizes to the complex case to yield the complexification of 
Eqs. (2.6), viz., 

(VQ)Z=VQ.VQ = b 2 (3.la) 

and 

(3.lb) 

where b is a constant, and g(t,x,Y,z) = bt + Q (x,y,z) is such 
that ka = g;a' Since Q is no longer required to be real, the 
case b = 0 in Eq. (3.la) is now admissible. 

The system (3.1) is a particular case of the system of 
potential equations (1.2) previously investigated.2 The gen­
eral solution is therefore obtained by employing Theorem 
3.1 of Ref. 2 (and writing a = Q Ib ifb #0), and the theorem 
is proved. 0 
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Corollary 1: In complexified Minkowski space-time, 
any "time-invariant" hypersurface-orthogonal shearfree 
null geodesic congruence can be associated with a family of 
equipotentials in complexified three-dimensional Euclidean 
space. In case (i) of Theorem 3.1, these equipotentials are 
planes (the principal curvatures are zero; the normal geode­
sic congruence satisfies e = (J" = 0); in case (ii) they are 
spheres (the principal curvatures are equal and nonzero; the 
normal geodesic congruence satisfies e #0 = (J"); in case (iii) 
the principal curvatures of the equipotentials are zero and 
the normal geodesic congruence satisfies e = (J" = 0; in case 
(iv) the principal curvatures of the equipotentials are equal 
and nonzero and the normal geodesic congruence satisfies 
e #0 = (J"; in case (v) the equipotentials are null planes (i.e., 
elements of the See,3 Y) and the normal geodesic congru­
ence satisfies e = (J" = 0; and in case (vi) the equipotentials 
are nonplanar null surfaces (i.e., elements of the See,3 f and 
the normal geodesic congruence satisfies e # 0 = (J". 

Proof This follows immediately from Table I of Ref. 2. 
We note that the quantities e and (J" refer both to the space­
time congruence and to the auxiliary congruence of rays 
orthogonal to the equipotentials in complex Euclidean 
space. 0 

Remark: As observed in Ref. 2, case (ii) is recoverable 
from case (iv) by the specialization ¢ '''(/3) = A (/3) = o. 

Our main result is as follows: 
Theorem 3.2: There is a mapping X of the set S of ex­

panding (generally, non-hypersurface-orthogonal) shearfree 
null geodesic k congruences in real Minkowski space-time 
that are invariant under a timelike translational Killing vec­
tor s into the set Sin complexified Minkowski space-time 
M * of expanding hypersurface-orthogonal shearfree null 
geodesic k congruences that are invariant under the action of 
~ (the complex analytic extension of s), and which satisfy 
k·~#O. Conversely, there is a mapping tP of the set S of such 
congruences into the set S of congruences in M. 

Furthermore, there is an equivalence relation R on the 
set S such that the maps yS-S I Rand tP:S I R -S are bijec­
tive; tP°X = identity on Sand X°tP = identity on s: 

Proof (a) We first prove the existence of the maps X and 

(i) Suppose that we have an expanding shearfree null 
geodesic congruence in real Minkowski space-time, whose 
affinely parametrized tangent vector is k. Suppose further 
that this congruence is invariant under a timelike transla­
tional Killing vector S. Choose coordinates (t,x,y,z) in Eqs. 
(1.2) such that S = J IJt(without loss of generality, S is a unit 
vector). Then, by Theorem I of Ref. 4 (in our notation; see 
also the remark after Theorem 2.2 above), there is a set of 
coordinates (u,v,~.t) such that either k = dv ofk = - (du 
+ Yd; + Yd~ - YYdv), where either Y is constant, or 
Y = Y (x,y,z) is a complex function, defined implicitly by 

1 -- v"2F (Y,u + ys,S - Yv) 

1 I -
¢ (Y) + " r~ - Yv) - --=Y(u + ys) = 0, (3.2) 

v2 V2 
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where tP is an arbitrary analytic function of Y. The cases 
where k = dv or where Y is constant are inadmissible, since 
then the congruence is nonexpanding. Define q = q(x,y,z) 
= - (I/v2)Fy = tP '(Y) - (l/v2)(u + v + 2Y(). By 
the remarks following Eq. (2.10), we obtain (Vqf = I and 
V2q = 2/q [which implies (V2q)2 = - 2Vq.V(V2q); 
cf. Eq. (2.6»). The hypersurfaces It - q = constant 1 are null 
and, in general, complex [from the remarks following Eq. 
(2.10), they are real if and only if tP (Y)==cy 2 + bY + c for 
some complex constant c and real constant b ). Moreover, the 
(complex) vector field k = d t - dq is null, hypersurface­
orthogonal, invariant under the action of ~ = a I at, satisfies 
k·~#O, and, from the arguments used in the proofs of 
Lemma 2.1 and Theorems 2.2 and 3.1, is geodesic, shearfree, 
and has nonzero expansion scalar. The procedure outlined 
above serves to define the map X. 

(ii) Suppose conversely that we have an expanding hy­
persurface-orthogonal shearfree null geodesic congruence in 
complexified Minkowski space-time that is invariant under 
the action of ~ = alat, whose affinely parametrized tangent 
vectorisk, wherek·~#O. As in the proof of Theorem 3.1, we 
may write ( = g.a for some (complex) function g, where 
g(t,x,y,z) = bt + Q (x,y,z) and 

(3.3a) 

and 

(3.3b) 

where b = k'~ is a nonzero constant. 
By Theorem 3.1 and its Corollary, there are two classes 

of solution to Eqs. (3.3) for which () #0 = (7. These were 
labeled (ii) and (iv) in Theorem 3.1. As we observed in Ref. 2 
and the remark following Theorem 3.1, we can recover solu­
tion (ii) from (iv) by the specialization tP "'(/3) = A '(/3) 
= O. This means that in either case we can construct a func­

tion Y /3 satisfying Eq. (3.2). We now define the real vector 
k = - (du + Yd ~ + Yd~ - YYdv). The integral curves of 
the k congruence form an (affinely parametrized) expanding 
shearfree null geodesic congruence in real Minkowski 
space-time (this follows from Sec. 2). Moreover, the congru­
ence is invariant under the action of S = a lat, since 
Y = Y(x,y,z), and the congruence is hypersurface-ortho­
gonal if and only if tP (y)==cY 2 + bY + c for some complex 
constant c and real constant b. The procedure thus described 
serves to define the map tf;. 

(b) We have thus exhibited the existence of the maps X 
and tf; and we now examine their properties: 

We define a relation R on the set Sby the requirement 
that any two members of S are related by R if and only if, 
when expressed in terms of solutions to Eqs. (3.3), the func­
tions tP ((3) are identical [but the functions A (/3) may differ]. 
This relation is clearly an equivalence relation. Moreover, by 
the above construction of the maps X and tf;, it is clear that 
tf;°x is the identity on S, and that X°tf; is the identity on S, 
from which it follows that X and tf; are bijective maps. 0 
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APPENDIX. GENERATION OF NULL CONES 

We show that if Y = ( - z ± r)/(x - iy), where r = (Xl 

+ y2 +Z2)1!2, then ka =fg;u' whereg =gl[(u - v)lv2] 
± [2sl + !(u + V)2] Ilzl = g(t ± r), and [l ± (zlr)] 
Xfg'(t ± r) = - v2, in agreement with the claim made in 
Sec. 2. This is done by employing Eq. (1.5a), which requires 
that 

fgu = -1, (AI) 

fg" = YY, (A2) 

fg, = -Y, (A3) 

and 

fg~= -Y, (A4) 

where Eqs. (A3) and (A4) imply that.t;g, = - tY 
= - ~Y = ftgt' from which we get g_ = g(t~,u,v). Let 
U = u + v, V = u - v and W = v[4tt + (u + V)2). Then 
Eqs. (AI) + (A2) - (A3) shows thatgu = O. Equations 
(AI) and (A3) become 

f( g w ~ + g v ) = -1 

and 

f gw 
(W2 _ U Z

) = U + W. 
W 

Eliminatingf, we obtain 

from which we get 

Thus, g is a function of V ± W = u - v ± v[4t( 
+ (u + V)2] only, i.e., g = gl [(u - v)lv2] 
± [2t( + !(u + U)2]

IIZ
J =g(t ± r), where r = (x2 + y2 

+ ZZ)I!2. Direct substitution of this result into 
Eq. (AI) shows that [I + (zlr)]fg'(t ± r) = - tl2. 
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Using the terminology of Jet bundles, we determine generalized symmetries of the Yang 
equations 

f(t;,y + hz) - J;,/Y - hfz - ey gy - ezgz = 0, 

f(eyy + ezz ) -2 ey/y - 2ez fz = O. 

f(gyy + gzz) - 2gy - 2gy J;, - 2gz h = 0, 

which are equivalent to the self-dual Yang-Mills equations in a particular gauge. The Backlund 
transformations of Corrigan et al. are derived and discussed as generalized symmetries. 

1. INTRODUCTION 

There has been a recent upsurge of interest in the classi­
cal notion of a Backlund transformation. 1-9 In particu1ar, 
there is considerable research activity aimed at formulating 
both an appropriate definition and also an effective compu­
tational scheme for the determination of Backlund transfor­
mations in more than two dimensions. The framework 
which seems most likely to provide the answer to both as­
pects is that which surrounds the formalism of jet bundles. 
We refer to the work of Hermann, 10--12 Pirani, 7-8 and 
Dodd 13 for details of this theory and wish to concentrate our 
attention on the computational utility of the language of jet 
bundles. 

By making a special choice of gauge, the R gauge, 
Yang 14 was able to show that the Yang-Mills gauge poten­
tials in complexified Euclidean space A Q k could be expressed 
in the form 

(Ll) 

whereA k = ~ A \0'" (with Pauli matrices (]"Q) and rt kj is the 
't Hooft 15 tensor given by 

Tfa kj = eOukj + Oak 00j - Oaj 00k' (1.2) 

The condition for the field strengths FOk = d j Ak - dk A j 

+ i [A j' A k ] to be self-dual, *Fjk = ! ejkie Fie = Fjk 

becomes 

f(J;,y + hz) - J;,/Y - hfz - ey gy - ez gz = 0, 
(1.3) 

f( eyy + ezz ) -2 ey/y -2 ezh = 0, 

f(gyy + gzz) -2 gyJ;, -2 gzh = 0, 

where 

(2)112 (y - Z\ = X (]"I' 

\z - yJ I' 

(1.4) 

(1.5) 

and y,z are complex variables independent of y* and z*, the 
complex conjugates of y and z. 

a'Visiting Associate Professor of Mathematics 1977-78. 
"'Permanent address. 

In this paper we will use the language of jet bundle the­
ory to determine symmetries and generalized symmetries 16 

ofEqs. (1.3)-(1.5), which we refer to as the Yang equations. 
In the following section we will determine generalized sym­
metries of the Yang equations and show that there is essen­
tially only one nontrivial example of the type considered. 
The map so constructed is the "Backlund map" of Corrigan 
et al. 17 Despite the fact that no generally accepted definition 
of a Backlund map in higher dimensions has yet been formu­
lated, it is unlikely that the name will p'entually be associat­
ed with this example. Generally speaking, some form of inte­
grability condition is involved in a Backlund transformation, 
and, although it is likely that this will need to be weakened, 
some such notation as involution 13 will probably be re­
tained. Here we show that a generalized symmetry is a cor­
rect description of the Corrigan et al. mapping. 

A Backlund transformation from an equation to itself 
(an auto-Backlund) is, in two dimensions, essentially a single 
discrete symmetry akin to parity or charge conjugation. Act­
ing on a solution ¢ of its appropriate evolution equation, we 
find that 

B2 ¢ = ¢. (1.6) 

With such a single operator a family of operators can be 
associated by utilizing the symmetries of the relevant evolu­
tion equation. Generally, in examples such as the sine-Gor­
don equation or Korteweg-de Vries equation, there is only a 
one-parameter family but there is no particular reason for 
that. If La is a symmetry transformation, either space-time 
or internal, which is paramerized by a set oflabels a, we can 
define a multiparameter Backlund map B a corresponding to 
a single Backlund map B by 

Ba=La-IBLa. (1.7) 

Thus there are two parts to a Backlund transformation. We 
must determine both a discrete mapping and also its interac­
tion with the space-time or internal symmetrys La of its 
evolution equation. 

The "Backlund map" of Corrigan et al. 17 has property 
(1.6), and in the final two sections ofthis paper we determine 
both internal symmetry transformations of the Yang equa­
tions which may be compounded with the single map B to 
give alternative forms of a "Backlund map" and also space-
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time symmetries which may be combined, as in (1.7), to give 
a more general multiparameter form. Although most of our 
results are already known, the overall approach is novel and 
illustrates clearly the advantage of the jet bundle approach. 
We answer in the affirmative the question posed by Corrigan 
et al. 17 as to whether or not they have found the most general 
"Backlund map." That we are able to solve the equations 
that arise is due to the remarkable, and not yet fully ex­
plored, structure of the Yang equations. 

2: THE "BACKLUND TRANSFORMATION" AS A 
GENERALIZED SYMMETRY 

The Yang equations are given by 

f(fyy + fzz) - fyfy - fzfz - e,y g,y - e,z g,z = 0 (2.1) 

f( e,yy + e,zz) - 2e,yfy - 2e,zfz = 0, (2.2) 

f( g,yy + g,zz) - 2 g,yfy - 2 g,z/z = O. (2.3) 

Let us denote the base space with coordinates z 1 = y, 
ZI = y, Z2 = Z, Z2 = zby M. We note that only certain first 
derivatives occur in the equation, and, to utilize that proper­
ty, we define the variables t/Ju by 

(2.4) 

and denote the space with coordinates t/J U by N. We denote 
the jet bundle coordinates corresponding to derivatives 
az" t/J b, az" t/J b by t/J:, t/J; and similarly for the coordinates 
corresponding to higher derivatives. Changing to t/J U eases 
the computations as one gains first-order expressions for all 
functions except t/J 1. 

Once we add the additional equations t/Jl = t/J13 and tH 
= t/J,l the equations in the t/J U are completely equivalent to 

the original Yang equations. The resulting equations are 
functions on J 2(M, N) and we will determine the Corrigan 
et al. "Backlund transformation" as a symmetry of the equa­
tions expressed in the t/J a rather than a normal Backlund 
map which is associated with integrability conditions. 

In terms of the natural coordinates on the jet bundle 
J2(M, N) we have an ideal generated by five functions a j 

defined as follows: 
t/J1(t/J:I + t/Ji2)-t/J: t/Jt -t/J~ t/J~ _~t/J4-t/J3t/JS=al' 

(2.5) 
t/JI( 1/?. + t/JD -2 ~ t/Jt -2 t/J3 t/J1 = a 2 , (2.6) 

t/J1(t/Ji + t/Ji}-2t/J4t/J: -2t/Jst/J21=a3, (2.7) 

Jfz - t/Jt = a 4 , (2.8) 

t/Jt - t/J~ = as, (2.9) 
a j : J2 (M, N)-.R. 

If the mapping f J 2(M, N)--+R s is defined by 
fp-(a l (p), a 2 (P)I , ... ,as (p»), 

then Yang's equations are expressed in jet bundle language 
by saying that a function t/J:M-Nis a solution ofthe Yang 
equations if 

foj2t/J=0. (2.10) 

Let us look for a symmetry of the equations. Consider a 
mapping 

B:N_N. 

Such a map B defines a map jj = (idM XB ):r(M, N)--+ 
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reM, N), which can be uniquely lifted to 
B:P(M, N )_P(M, N). We will call B a symmetry transfor­
mation ifit has the property thatB preserves the ideal gener­
ated by the a p that is, 

(2.11) 

We could allow products of the aj on the right-hand side, but 
we do not do so here. The equations 

- k B.as = Ys a k 

and 
- k 

B.a4 = Y4 a k 

show that if B: t/Ju_t/J'u, then 

and 

t/J'2 = el( t/JI) -2 t/JS + e2 ~ + e3, 

t/J'3 = - e'( t/JI) -2 t/J4 + e2 t/J3 + e4, 

t/J,4 = eS( t/JI) -2 t/J3 + e6 t/J4 + e7, 

t/J,5 = - eS( t/JI) -2 ~ + e6 t/J5 + eS, 

where the e 2 are constants. 
The equations 

B- k .a2 = Y2 a k 

and 
- k B.a3 = Y3 a k 

give rise to two solutions. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

In the first ei = O,ji= 1,5, and t/J' 1 = e 9/ t/JI for constant 
e9 and the mapping B takes the form 

B:( t/J1, ~,t/J3, t/J4, t/JS) 

[ 
e9 el t/Js - el t/J5 e5 t/J3 - eS t/J3 ] 

- t/JI' (t/J1)2' (t/J1)2 '(t/JI)2' (t/JI)2' (2.16) 

The final constraint 
B.a l = YI ka k 

is automatically satisfied by a B of the above type provided 
only that 

e1es + (e9)2 = 0 (2.17) 

The second solution is the simple scaling symmetry S de­
fined by 

S:( t/J1, ~,t/J3, t/J4, t/JS) 
_(elO t/J1, e2 ~, e2 t/J3, e6 t/J4, e6 t/J5), 

where the invariance of a l requires that 

By using this scaling symmetry with e2 = (e I) -I, 
e6 = - (e5

) -I we can reduce B to the simple form 

B:( t/JI ~,t/J3,t/J4,t/J5)--+«~) -I ,(t/JI) -2 t/J5, _ (t/JI) -2 t/J4, 

(2.18) 

(2.19) 

(2.20) 

which is the "Backlund transformation" of Corrigan et al. 17 

The effect on the ideal generated by the a j is 

B.a l = _(t/JI)-4 al , (2.21) 

B.a2 = + (t/JI)-3as , 

B.a3 = + (t/JI) - 3a4 , 
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fJ.a4 = + (tPI)-3a3 , 

B.a5 = + (tPI) - 3a2 . 

(2.24) 

(2.25) 

B is a normal symmetry of Eqs. (2.5)-(2.9). Once we intro­
duce the potentials e and g to remove (2.8) and (2.9) the 
mapping B can be regarded as a generalized symmetry of 
Eqs. (2.1 )-(2.3) in the sense of Ovsjaninkov. 16 

In the following section we return to the Yang equation 
in the form (2.1)-(2.3) expressed in terms of the potentials 
f, e, and g. Regarded as equations on J 2(M, P), where Pis the 
space of potentials (f,e, g) they define an ideal of functions 
spanned by the three functions (3i defined by 

(31 = lUll + h.'i) - It fr - h. h - e2 g'i, (2.26) 

(32 = I( ell + e2'i) -2 el fr -2 e2 l'i (2.27) 

(33 = I(gll + g2Z) -2 gl II -2 g'i/2 (2.28) 

3. SYMMETRIES OF THE YANG POTENTIALS 

Working now with the Yang equations expressed by the 
ideal expressed by the (3i' we seek a symmetry transforma­
tion L: P_P. Such a map defines a mapping 
L:JO(M,P)-Jo(M,P) defined by f = (idM XL). 

As before, I can be uniquely lifted to a mapping 
LJ 2(M, P)_J2(M, P). We require that L leave the ideal 
spanned by the (3i invariant in the simple linear fashion, 

f.(3i=r!(3j' (3.1) 

To shorten the account of the calculations, we note that the 
cancellation in (3.1) of terms involving ey" ez, gy' andgz may 
be achieved by takingf', e', g' in the form 

f' = - e I/J, (3.2) 

e' == - tPe' 
g' = - tPg , 

(3.3) 

(3.4) 

where tP:P-P is a solution of the equation 
./, = e21

" 'f' ge (3.5) 

and we have utilized elementary scaling symmetries to re­
move unnecessary constants assumed nonzero. By so doing 
we have eliminated from our solutions those tP correspond­
ing to such simple scaling symmetries as (f, e, g)-
(± f, e, g). 

The in variance of (33 gives the following equations for 
tP: 

(3.6) 

(tPgg e - 21/)r= - 2/- 1
( tPgge-2~, (3.7) 

(tPgg e - 2~ e = - 1- I( tP gfe - 2~, (3.8) 

(tPgr e - 2~ g = 0 (3.9) 

(tPgr e - 21/')e= -2/- I (tP ge e - 21/,)= -21 -I. 
(3.10) 

These equations can easily be reduced to 

tPgg e - 21/;= (e2+ Be+C)/- 2, 

tPgee-21/' = - (2e + B)f- 1, 

(3.11) 

(3.12) 

where Band C are constants. 
Similarly the invariance of (32 yields the two equations 
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tPee e-2
1/J =(gZ+ Dg+H)/-2, 

tPer e -21/; = - (2 g + D) 1-2
, 

(3.13) 
(3.14) 

where D and H are constants. 
The in variance of (31 produces the following equations 

for tP: 

I-I tPr+ tPrr= e-2
1/; tPertPgr' (3.15) 

(e- 2
1/;)e = -(2g+ D)+f-2 (gZ+Dg+H) 

X(2e + B), (3.16) 

(e- 21/;)g= -(2e+ B)+f-2(e2+Be+C) 

X(2g+ D), (3.17) 

(e-21/')r = 21 - 2/-3 (gZ + Dg + H) 

X(e2+ Be+C). (3.18) 

Equations (3.16)-(3.18) can be integrated to give 

e -21/; = K - (2ge + De + Bg - 12) 

+1--2 (gZ+ flg+ H)(e2+ Be+C), (3.19) 

where K is a constant. 
The result must now be substituted back in (3.15) to 

find the constraints that are implied upon the constants K, B, 
C,D,H. 

then 

If we define 
a = cr + Dg + H)(e2 + Be + C), 
(3 = - (2ge + De + Bg - K), 
r = (2g + D )(2e + B), 

(3.20) 
(3.21) 
(3.22) 

e -21/J = 12 + al -2 + (3 and tP _ - 1+ al -3 
r- 1 2+al-2 + (3' 

(3.23) 

This is a solution of Eq. (3.15) which can be written in the 
form 

UtPr)r= rl- I e2
1/; (3.24) 

if 
r= -2(3 (3.25) 

and 

r= 16a (3.26) 

These conditions require that 4H = D 2, 4C = B 2, and 
K = - DB /2. (3.27) 
Therefore, our final expression for e-2

1/; is 

e N = F -2 ge + 1-2 gze2 = (ge - 12f 1-2, 
(3.28) 

where 

g = g + D /2 and e = e + B /2. (3.29) 

An tP of this form is easily found to satisfy Eqs. (3.4) and 
(3.11)-(3.14). The potentialsg and e are simply constant 
shifts corresponding to a trivial translational gauge symme­
try, and without loss of generality we can take D = B = O. 

Finally then we have essentially a single symmetry L 
which is not of a scaling or translational type and it is given 
by 

f' = - e t- t/. = - I/(eg - 1 2
), 

e' = - tPe = g/(eg - 1 2
), 

Hedley C. Morris 

(3.30) 

(3.31) 

258 



                                                                                                                                    

g/ = - t/Jg = e/(eg - 12
), (3.32) 

and its action on the ideal generators /3j is 

- [2 ] 123 L./31 = (eg + I )/31 - gl/32 - el/33 /(eg - ) , 
(3.33) 

(3.34) 

L./33 = (/32 + e2/33 -2e /31)/ 2 /(eg - 1 2)3. (3.35) 

L has the property (1.6) that 
L 2 = 1. (3.36) 

This is most easily seen if we define the matrix Q by 

(3.37) 

L:Q-.Q-I and (3.36) is plainly true. 

The elementary scaling and translational symmetries corre­
sponding to those in Eqs. (2.15)-(2.19) are T ± (~) defined 
by 

T ± (a):(f,e,g)( ± (a l a z )1/2f,a l e + a 3,a2 g + a 4 ). (3.38) 

This mapping can also be expressed in terms of the matrix Q 
by 

T ± (a):Q-+l1Qa + b, 

where 

(3.39) 

a = (Voa l 0) 
± V a 2 

and 

(3.40) 

and in future we will denote T + (a) by T(a,b), where a, bare 
arbitrary diagonal matrices an-d we can, without loss of any­
thing buttrivial solutions, take a as nonsingular. Such T (a,b ) 
form a noncommutative group with composition law 

T(a,b) T(c,d) = T(ac,ada + b) (3.41) 

and 

(3.42) 

The most general transformation constructed from the 
T(a,b) and L takes the form 

L ± (a,b,c,d) = ± T(a,b )LT(c,d). (3.43) 

The action of L ± (a,b,c,d) on Q is 

L",(a,b,c,d):Q-.(AQ + B )(CQ + D) - I, (3.44) 

where 
A = ± ba - IC, B = ± (ac - I + ba - I dc - I), 

C = a - IC, and D = a - I dc - I, (3.45) 

which satisfy the constraint 

AD-BC= ~1. (3.46) 

This shows that the symmetry group G we have discovered is 
isomorphic to the set of 4 X 4 matrices of the form 
M(A,B,C,D) defined by 

M (A,B,C,D) ~ C J, (3.47) 
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where the A,B,C,D are diagonal matrices with the property 

AD-BC= ~1 (3.48) 

The multiparameter family of discrete maps corresponding 
to L '" and defined by 

L",(c,d) = T -1(c,d)L",T(c,d) (3.49) 

corresponds to the subgroup of G consisting of matrices 
I",(c,d) of the form 

(
~d 

l",(c,d) = 

c2 

which naturally have the property 

l~(c,d) = 1. 

(3.50) 

(3.51) 

The two components of the symmetry group G + and G 
corresponding to = AD - BC = ± 1 are connected by the 
discrete transformation T = T (i,O) 

TG ± = G+ T. (3.52) 

One cannot combine the maps Band L regarded as symme­
tries as they act on different spaces. However, if we regard B 
as a generalized symmetry, 16 we can make sense of the map 
"" "" B = LB, B:(f,e,g)-.(f',e' ,g/), which provides a "Backlund 
transformation" in the form 

(e/g/ - 1,2) 
1= - f' ' 

a- = - -a e, ( e') 1 
y e/g/ -1,2 12 z 

a = - -a-g ( 
g/) 1 

Z erg' _ I ,2 12 Y , 

a- = ~e, ( 
e' ) 1 

Z e'g/ -1'2 12 Y 

a ( g/ ) - _1 a 
Y e/g/ - 1,2 - 12 zg, 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

which is the alternative form given by Corrigan et al. 17 

4. COORDJNATE SYMMETRIES 

Let X:M-.M be defined by 

X:( y,z, Y,Z)-.( Y,Z, Y,Z). 

If we assume that the t/Ja are scalars, then x may be uniquely 
lifted to a mapping X) 2(M,N )_J2(M,N), where Xis the lift 
of X = (X X idM ). Let us seek a symmetry which preserves 
the ideal generated by the a j in the sense that 

(4.1) 

where-.!~ a; are the aj expressed in the coordinate system 
(Y,Z, Y,Z). The invariance of a4 and as shows that 

Y=ay, Y=/3y, 
(4.2) 

Z = az, Z =/3i. 

This immediately implies the invariance of a 2 and a 3 and the 
invariance of a I requires that a/3 = 1. We denote the trans­
formation arrived at by Xu' Thus 

Hedley C. Morris 259 



                                                                                                                                    

Xa :(y,z,y,z)---+(ay,az,a -I y,a -I z) 

The action on the ideal generators is given by 

(4.3) 

X*a l =a;, X*a2 = (lIa)a;, X*a3 =aai, 
X*a4=aa~, X*as=(l/a)a;. (4.4) 

Clearly as the map B is an internal symmetry, we will not 
obtain a family of "Biicklund maps" by combining Band Xa 
as in (1. 7). The nature of the t/f' as derivative of potentials 
must be included, and as our next step we must implement 
the fact that the t/f' are no longer all scalars when we extend 
our mapping X to the jet bundle J 2(M,N). Let 

X:(y,y,z,z)---+(Y(y,z),Y(j,z), Z(y,z)Z(y,z»; (4.5) 

then this defines a mapping X on r(M,N) given by 

X = (X XL), (4.6) 

where L:N---+N is given by 

L:(t/JI ,t/l,t/?,I/l,t/Js)---+(t/J' 1, Y1 t/J,2 + ZI t/Jd,t/J,2 Y2 + t/Jd Z 2, 

(4.7) 

The map X can now be lifted uniquely to a map X: 
22--J (M,N )---+J (M,N). Such a map X automatically preserves 

as and a 4 as 

X*as =(~ Z2 -ZT Y2 )a;, 
X*a4 =(Y1 Z2 -ZI Y2)a;. 

The in variance of aI' a 2 , and a 3 requires only that 

Y1 YT + Y2 Yz = ZI ZT + Z2 Z2' 

Y1 ZT + Y2 Z"i =O=ZI YT +Z2 Y"i' 

(4.8) 
(4.9) 

(4.10) 

(4.11) 

From these equations one easily shows that the functions 
Y, Y,Z, Z are linear functions of their respective arguments. 
We write 

(4.12) 

and 

(4.13) 

where A and B are constant matrices and C and D constant 
vectors. The C and D correspond to translation invariance, 
and we set them both to zero. 

Equations (4.10), (4.11) can be expressed neatly in 
terms of A and B as 

AB 1'=/i/, (4.14) 

where /i = ~ Y1 + Y2 Y2 is a constant. 
The action on the generations a j is given by 

X*aj=/ia;, i=I,2,3, (4.15) 
X*a4 = detAa~, X*a s = detBa;. (4.16) 

We denote the coordinate symmetry expressed by (4.12)­
(4.14) by X(A,B). The mappingX(A,B):J°(M,N) 
---+r(M,N) defined by 

260 J. Math. Phys .. Vol. 21, No.2, February 1980 

can be lifted to a unique transformation 
X (A ,B ):J 2(M,N )---+J 2(M,N). As both Rand X (A ,B) act on 
the same space J O(M,N), we can stay at the J O(M,N) level 
and construct a family of "Biicklund maps" R(A,B) fromR 
by defining 

R(A,B) =X -I (A,B) RX(A,B) = (idM XB(A,B». 
(4.18) 

One readily determines that B (A,B ):N---+N is given by 

B (A,B ):(t/JI ,t/l,t/J3,t/J4,t/JS)---+(t/JI) -I, detB L, 
/i (t/JI)2 

detB t/J4 
--;- (t/JI)2' 

detA L. _ detA L) (4.19) 
/i (t/JI)2' /i (t/JI)2' 

From (4.19) we have detA detB = /i 2, and we see that 
B (A ,B) simply results from B by a scaling symmetry of the 
type in Eq. (2.18). As we determined all possible B, this had 
to happen, but it is interesting to see how it has come about. 
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Watson's theorem, which gives sufficient conditions for Borel summability, is not optimal. 
Watson assumes analyticity and uniform asymptotic expansion in a sector largz I < 'IT /2 + E, 

~I < R, with E> 0; in fact, only the circular region Re(1/z) > 1/R is re~uired. In par~icu.lar, 
one can take E = O. This improved theorem gives a necessary and sufficient charactenzatlOn of a 
large class of Borel-summable functions. I apply it to the perturbation expansion in the 4>24 
quantum field theory. 

There has recently been much interest in the Borel sum­
mation of perturbation expansions in quantum mechanics 
and quantum field theory. Proofs of Borel summability l-8 

have universally relied on the classic theorem ofWatson,9.1O 
which gives a sufficient condition for Borel summability. 

The purpose of this note is to point out that Watson's 
theorem is not optimal, and to call the attention of physicists 
to an improved version of Watson's theorem. This improved 
theorem appears in an apparently little-known 1918 paper 
by F. Nevanlinna, 11.12 and was rediscovered and extended by 
the present author. 14 This theorem makes clear the "natu­
ral" region of analyticity for Borel-summable functions; for 
as I shall emphasize, the theory of Borel summability is 
nothing other than the theory of Laplace transforms, written 
in slightly different variables. 

Let us recall that we are concerned with a function/(z) 
possessing an asymptotic expansion ~anzn as z--+O in an ap­
propriate region of the complex plane; we wish to determine 
conditions under which/(z) can be uniquely reconstructed 
from its perturbation coefficients an . One such method of 
reconstruction is Borel summation. 10.15 We say that the for­
mal power series ~a n zn is Borel summable if: 

(a) B (t) = ~an t n/n! converges in some circle I t I < 8; 
(b)B (t ) has an analytic continuation to a neighborhood 

of the positive real axis;16 and 
(c) g(z) = (1/z)s;r tlzB (t) dt converges (not neces­

sarily absolutely) for some z#O. 

B (t ) is called the Borel transform of the series ~a n zn, andg(z) 
is its Borel sum. 

Please note that the integral in (c) is a Laplace trans­
form (the conventional variable is s = 1/z). It is well known 
that Laplace transforms converge in right half-planes. I? 

Therefore, if the integral in ( c) converges for some Zo # 0, 
then it converges for all z with Rez-1 > RezO-

1 , and g(z) is 
analytic there. This region is a circle tangent to the imagi­
nary axis (Fig. 1). 

Watson's theorem9 gives a sufficient condition for the 
function/(z) to equal the Borel sum g(z) of its asymptotic 
Taylor series. Let/(z) be analytic in a sector 1 argz 1 

< 11'/2 + E, Izl <R,forsomeE> O,andlet/(z)havetherethe 

a)NSF Predoctoral Fellow (1976--79). Work supported in part by NSF 
PHY 78-23592. 

asymptotic expansion 
N-I 

/(z) = I akzk + RN(z), 
k=O 

with 

(1) 

IRN(z)I<Ac?N!lzIN (2) 

uniformly in N and in z in the sector. [The N! bound (2) is 
crucial.] Under these assumptions, Watson shows that: 

(a')B (t) = ~ant N/n! converges in the circle I t I < 1/0'; 
(b') B (t ) has an analytic continuation to the sector 

1 argt 1 < E; and 
(c') the integral (l!z)S;e - t IZB (t) dt is absolutely con­

vergent for Rez- I >R -I and there equals/(z).18 
In some applications of Watson's theorem, however, it 

may be difficult (or impossible) to verify the analyticity and 
the estimate (2) in a sector with E> 0; it would be desirable if 
E = 0 could be allowed. Furthermore, it is unnatural for the 
hypothesis of the theorem to refer to a region of the z plane 
strictly larger than that in which/(z) is recovered by Borel 
summation. Both of these disadvantages are remedied in the 
following theorem, which gives a necessary and sufficient 
characterization of a large class of Borel-summable 
functions. 

Theorem:" Let/be analytic in the circle CR 

= I z:Rez-1 > R -I J and satisfy there the estimates (1) and (2) 

o R 

FIG. 1. Minimum region of analyticity of Borel-summable function. 
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ll. 

I/a-
I/a-

FIG. 2. Region of analyticity of the Borel transform, for a function satisfy­
ing the hypotheses of Nevanlinna's theorem. 

uniformly in Nand in ZECR • Then B (t) = l:ant nln! con­
verges for / t / < 1/0' and has an analytic continuation to the 
striplike region S" = (t:dist(t,R + ) < 1/0'1 (Fig. 2), satisfy­
ing the bound 

/B(t)/<Kexp(/t /IR) (3) 

uniformly in every S", with 0" > 0'. Furthermore,J can be 
represented by the absolutely convergent integral 

fez) = (1/z) fO e - ,/ZB (t) dt, (4) 

for any ZEC R • 

Conversely, ifB (t) is a function analyticinS,," (0''' < 0') 
and there satisfying (3), then the functionf(z) defined by (4) 
is analytic in CR and satisfies (1) and (2) [with 
an = B (n)(t )/1 ~ 0] uniformly in every CR , with R ' <R. 

Since the proof of this theorem is very similar to 
Hardy's proof of Watson's theorem,1O I will only sketch the 
method (see also Ref. 11). First one shows, using (1) and (2), 
that the integrals 

bm(t)=am + ~rl: el/zz-(m+l) 
21TI JRe z I = r 1 

X V(z) - k~oakzk) dz, (5) 

are absolutely convergent for t;;;.O and independent of r for 
0< r < R; thatbo(t) is a C 00 function whose mth derivative is 
bm (t); and that 

/bm(t)/<K1u"'+I(m +1)! exp(tIR), (6) 

with Kl independent of t and m. Inserting (1) into (5) and 
performing a contour integral, one finds 

bo(t) = :~~ aktklk!+ 2~ifez_l~rle'/Zz-lRN(Z)dZ. 
(7) 

Using (2) to bound RN(z), and choosing r = t IN (with 
N> t I R ) to optimize the estimate, the remainder term in (7) 
is bounded by K2N 112(O't )N. Hence, for O<t < 1/0', the re­
mainder goes to zero as N-+ 00, and bo (t) there equals 
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B (t) = l:: ~ oaJ k Ik!, a series which converges in the circle 
/ t / < 1/0'. Furthermore, it follows from (6) that each series 

B'o(t)= ! bm(to)(t-to)mlm! (to;;;'O), 
m=O 

converges in the circle / t - to / < 1/0' and satisfies there the 
bound IB'o(t) I <Kl exp(toiR )(1 - O')/t - tot 2. It is not 
hard to show that B 10 (t ) = B I I (t ) wherever both are defined, 
and that the union of all these functions therefore defines a 
single-valued analytic continuation of B (t ) into the region 
SeT> satisfying the bound (3) uniformly in every Sa' with 
0" > 0'. Finally, inserting (5) (with m = 0) into the right-hand 
side of (4), one obtains 

ao + - dte- ,/z -. dz' 1 loo 1 i 
Z 0 21Tl Rez' I ~ r I 

Xel/z'[J(z') - ao ]Iz'. 

Choosing r -1 < Rez -1 and noting that (f(z') - ao ]Iz' is 
bounded, one sees that the double integral is absolutely con­
vergent; thus one can interchange the order of integration, 
perform the integral, and verify (4). 

Conversely, if B (t) is analytic in Sa" and there satisfies 
(3), one uses Cauchy's integral formula to prove (6) [with 0''' 
replacing 0'] for t real and positive. Integrating by parts N 
times in (4), one demonstrates (1) and (2). Q.E.D. 

In order to understand this theorem, it is instructive to 
examine how the standard counterexamples 
fez) = exp( - z - a), with a > 0, fail to satisfy its hypotheses. 
If a;;;' 1, the asymptotic expansion (1) fails: for any R, there 
exists a curve lying within CR along whichf(z) does not 
approach zero as z-o. If a < 1, the expansion (1) holds but 
the estimate (2) fails: SUPZEC

R 
Iz -NRN(z) I is of order (N!) l/a. 

Iff(z) is analytic and satisfies (1) and (2) in a region of 
opening angle greater than 1T, then correspondingly stronger 
conclusions can be drawn. More precisely, letf(z) be analytic 
and satisfy (1) and (2) in the region CR,< = ullil«eiliCR; then 
a trivial modification of the foregoing proof shows that B (t ) 
is analytic in S".< = U jlij «eiliSa , and (4) holds for any 
ZECR ,< ' 

Using Nevanlinna's theorem, one can simplify the 
proof of Borel summability of the Schwinger functions in the 
cp i quantum field theory/ and also extend it in certain tech­
nical aspects. The heart of this proof is to show that the 
Schwinger functions are analytic and satisfy (1) and (2) uni­
formly in a semicircle Reg> 0, / g / < R, where g is the cou­
pling constant. By a scaling argument, one then extends this 
region to a sector of the form demanded in Watson's theo­
rem, with opening angle strictly greater than 1T; this argu­
ment is valid, however, only if the space-time smearing func­
tions are analytic in a sector containing the positive real axis. 
Nevanlinna's theorem shows that this scaling argument is 
unnecessary, and that arbitrary smearing functions can be 
allowed. 
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The Jost solutions for general Gaussian potentials 
L. Trlifaj 

Institute of Physics of the Czechoslovak Acad. Sci., Prague, Czechoslovakia 
(Received 11 December 1978) 

The explicit Born series which represent the regular solutions (of the Schrodinger 
equation), the lost solutions, and the lost functions analytic in some domains of 
complex wave numbers and angular momenta are found for general potentials of the 
Gaussian type expressed by the Stiltjes integral. When finding their form we make use 
of the analogy with the corresponding solutions for general potentials of the Yukawa 
type, which is based on the special representations of the Bessel and Hankel functions 
(purely kinematic solutions) in either case. Some other relations are also derived. 

1. INTRODUCTION 

We define a general Gaussian potential by a Stiltjes inte­
gral with respect to a function,u( t ) of bounded variation 

VCr) = - g f" d,u(t) exp( - tr) (r> 0). (1) 

Quantity g is a real constant. We introduce classes MK of 
functions ,u(t ) by demanding 

vp = l'" dv(t) t P < 00 for P<K when K>O or 

p=K when K=O or -1, (2a) 

where v(t) (dv = Id,u I) is the total variation of ,u(t). In the 
class MK with K> ° there may exist functions which satisfy 
the inequality (2a) for K too. This inequality implies that the 
potential VCr) and its first [K] (or [K] - 1) derivatives are 
continuous and finite for r;>O, if K > 0. The odd derivatives 
are always zero at r = 0, the first q even derivatives are also 
equal to zero there, if 

f' dll(t) t P = 0, for integral p O~p~qqK. (2b) 

We want to show that the regular solutions cp (A.,k,r) as 
well as the lost solution sf ± (A.,k,r) of the radial Schrodinger 
equation 

( 
d 2 A. 2 - 1. 2) 

- - __ 4 _ V (r) + k tf;(A.,k,r) = ° dr r (3) 

with the potential (1) can be found for complex wave­
numbers k and angular momenta A. in the form of explicit 
expressions. The case of the S waves (A. = !) is of a particular 
interest, since the interval of r[O, 00) can then be extended to 
( -- 00,00) in Eqs. (1) and (3) and the potential belongs to the 
symmetric model potentials, which generalize the harmonic 
oscillator potential. 

2. REGULAR SOLUTIONS 

A regular solution of Eq. (3), cp (A.,k,r) ::::f' + 112, as 
r->-O + is easily found by the technique of the modified La­
place transformation' 

w(A.,k,s) = f" dr r" + 1/2 e - sr' cp (A.,k,r) (4) 

(Res> O,ReA > 0), 

where Abel's asymptotic behavior is w(A.,k,s)~!r (A. + 1) 
X s - A .- 1 as s->- 00 and r (z) is the well-known r function. 
Equation (3) is then transformed into a first-order differen­
tial equation for w(A.,k,s) 

4s2w'(A.,k,s) + [4(,1 +l)s - k 2
] w(A.,k,s) 

= g loe d,u(t) w(A.,k,t + s). (5) 

Respecting the prescribed asymptotic behavior, we integrate 
it and transform into an integral equation, which can be 
solved by iterations. The result is 

w(A.,k,s) = !r (A. + l)s - A - I exp( - ~:) a(A.,k,s) (6a) 

x ( g)n foc ioc fOO u(A.,k,s) = I + I - - dZ I dll(t l ) ••• dZn 
n=1 4 0 T 0 

i
oc (s + u 1 + vo)" - I (s + un + Vn _ I)" -- I 

X dll(tn) A -t 1 
T (S+UI+VI)· (S+Un+Vn)A+1 

X exp(~ f (1 1)] 
4 p =) S + up + Vp _ I S + up + Vp , 

where 

Vo = Uo = 0. 

Since 

j
S+Up +Vp

-
I I<1 for Res;>-(p-l)l', 

s + up + vp 

I exp( ~: ) I ~ exp I ~: I, 
(OC dzp\s+up+vpl-2<vp-J for Res;>O 

Jo 

(6b) 

(6c) 

(7a) 

(7b) 
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the series converges absolutely and uniformly for Res> 0 
and ReA.> 1 provided v -I = S; dv(t) t -I < 00. If 
Vo = S; dv(t) < 00, the same conclusion can be drawn for 
-I <ReA. < 1. Further on we have 

,,;:-+------I
s + up + vp I 1 1 

tp(s+up+vp_ l ) ~ tp Is+up+vp_d 

<7- 1+ [IS12 + (p - If?] -1/2 for Res>O, (7c) 

so that the series (6b) is absolutely and uniformly convergent 
for Res> 0 and ReA. > - 1 - /( provided the function p(t ) 
belongs to the class M K (K > 0). Inequalities analogous to (7 a) 
and (7 c) hold also for general complex S except for the points 
from the interval [0, - 00), so that the series (6b) represents 
an analytic function of s in that region for any fixed k. 

This enables us to deform the usual integration contour 
of s for ReA. > - 1, when we invert the Laplace transforma­
tion (4) 

1 
qJ (A,k,r) = -. rCA +1) r-" +1/2 

2m 

X 1 ds s - ,,-I exp( sr - ~:) u(A,k,s). (8) 

3. THE JOST SOLUTIONS 

The introduced contour C goes from 00 exp( - i-rr) - i€ to 
o - iE, it encircles s = 0 in an anticlockwise direction and 
returns from 0 + i€ to 00 exp(i1r) + i€ (€ > 0) avoiding the 
points of the negative real axis. Such an integral representa­
tion can be continued analytically into the regions of A in 
which the function a(A,k,s) is defined. If the functionp(t) 
belongs to the class MK (K > 0), they are determined by 
ReA. > -1 - /(. In this half-plane the regular solution (8) is 
an analytic function of A except for the simple poles at the 
negative integral values due to the factor r (A + 1). It repre­
sents an entire function of E = k 2 at the same time. Accord­
ing to Eq. (4) the limit of w(A,k,s) tends to the finite value as 
s-o + for the bound states, which are given by k = ± ib 
(b > 0) and by the positive integral or half-integral values of A 
(A = A phys )' The eigenvalue equation consequently reads 

u(A phyS ' ± ib,O) = 0 (9) 

owing to Eq. (6a). It is a general form of the equation derived 
in Ref. Horp(t) = e(t -1)[1'< 1, eet) = o when t <0 and 
e (t ) = 1 when t> 0]. As the function a(AphyS ,k,O) is an ana­
lytic function of E = k 2 for ~17' > I argE I > 17'12 and 
lim/>-.", u(Aphys' ± ib,O) = 1, there is a finite number of the 
bound states b. 

In the case of the Yukawa potentials there is a relation between the forms of the regular solution and those of the Jost 
solutions, which can be based on a certain mathematical approach.2 Since we have not found such an approach in the case 
investigated, we made use of this formal relationship only and verified that the expressions 

! ± (A,k,r) = -rr - 1/2 exp [ =F i f<A - 1/2)] ( ~ y + 1/2 r -,\ + 1/2 L, ds s - " - I exp( sr - ~:) 

X {I + f (- g)n (CO dZ I (CO dp(tl)'" ('" dZn (CO dp(tn) exp[ - (un + vn)r] 
n= I 4 Jo J Jo J 

(s - Uo - vIY' - I ... (S - Un _ I - Vn)" - 1 [ k 2 n (1 I)]} 
X, (S-UI-vl)"+l ... (s-un-vn)"+1 exp 4" P~I S-Up_I-Up - s-up-up (lOa) 

where the contours C ± of S go from 0 exp[i(argk + r)] to 00 exp[i(argk - r=F 17')] avoiding the points of the line Irns = 0, 
Res>1' and Irl < 17', largk - rl < 17'/2, represent the Jost solutions ofEq. (3). 

Integrating by parts with respect to s or Zn we easily find that the expressions (lOa) are indeed solutions of Eq. (3) for 
either sign of A. According to Ref. 3 the first terms of the Born series (lOa) (corresponding to the choiceg = 0) 

h ±(A,k,r) = 17'- 1/2 exp [ =Fi ; (A - + ) ]( ~ y + 1/2 r-'\ + 1/2 L ds s-,\- I exp(sr - ~:) 

= h ± (- A,k,r) = exp [ - i ; (A + ~) J (17' ~ kr),/2H (2)( ± kr) [- k = exp( - i17')k] (lOb) 

are the Schliifli's integral representations of the Hankel function of the second kind. Using the asymptotic expression for this 
function we have 

! ± (A,k,r) = h ± (A,k,r) = exp( + ikr) as r-+ 00 (- 17' < argk < 17'). 

This is also why the solutions (lOa) are the Jost ones. As we are to expect, they are even functions of A,! ± (A,k,r) 
=! ± ( - A,k,r) and! _ (A,k,r) = f + (A,e - i7Tk,r), provided - ~17' < argk < ~17'. 

(11) 

In view of the exponential factors the series in Eq. (lOa) converges absolutely and uniformly for r> 0 and for any finite A 
and k provided v -I < 00. Thus the expression (lOa) represents an analytic function of k with the posssible branch point at 
k = 0 and an analytic function of A at the regular points k (r> 0). In the first quadrant of the A plane 

I[
S-Up- 1 -up ]"I<[(Up- 1 +vp -X)2+ y2](1/2)ReAexp [_ zply/ ImAJ (s=x+iy) (12) 

s - up - vp (up + up - X)2 + y2 (Up_I + vp + ~p + Ixl + lyJ)2 
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for y = Res < O. The contours C ± always can be chosen in such a way that the bracket in the first factor of the right-hand side 
of (12) is less than unity. Because of the two possible sign choices of A in the expression (lOa) we have then, asymptotically, 

f ± (A,k,r)-h ± (A,k,r) (13) 

as ReA._ ± 00 (ImA = const.). The same relation holds as ImA_ ± 00 (ReA. = const.). This is due to the second factor in the 
right-hand side of (12) as far as the contours C ± lie in the lower half-plane Ims.;;O for ImA- 00 and in the upper half-plane 
Ims>Ofor lmA- - 00 respectively. We can find, in general, regionsofk and rays A = IA 1 e i'P, where the relation (13) holds as 
IA 1-00. 

The combinations 

X(±A,k,r)=exP[i;(±A- ~))f+(A,k,r)-exp[ -i;(±A- ~ )]f_(A,k,r) 

= _1T-1/2(~)±A+I!2r+A+1I2 f dSS+ A- 1 exp(sr- ~){1+ f( -g)" roo dZ I r"" dj.l(t
l

) ••• 

2 Jc 4s n = 1 4 Jo J 

i
oe 100 (s-u -v )±A-J (s-u _V)±A-J 

X dZn dj.l(tn)exp(-(u" +vn)r) 0 1 ••• n-I n 
o T (S-U

J 
_VI)±A+I (S-U

n 
_Vn)±A+l 

xexp[~ i ( 1 _ I)]} 
4 p=1 (s-up _ 1 -vp s-up -vp , 

(14) 

where the contour C goes from 00 exp[i(argk - r - 1T)] to 00 exp[i(argk - r + 1T)] encircling the point S = 0 in an anti clock­
wise direction, are, again, solutions of Eq. (3). The first (kinematic, g = 0) terms of the series (14) are Schliifli's and Sonin's 
integral representations of the Bessel function3 X 0 ( ± A,k,r) = - i(21Tkr) 112 J ± A (kr). The functions X ( ± A,k,r) reproduce 
themselves under the substitution k-e - irrk 

X( ± A,e - irrk,r) = exp [ - i1T( ± A + 1/2) ]X( ± A,k,r). (15) 

The Jost solution! ± (A,k,r) can be expressed by the function x( ± A,k,r) for nonintegral values of A. The double application of 
the relation (15) leads then to the known circuit relations of the Jost solutions.4 We do not give them as many other well­
known and general relations,4-7 as they simply follow from the derived relations or expressions. 

4. THE JOST FUNCTIONS 

According to Refs. 4--7 the J ost functions are defined by 
the limits 

! + (A,k) = lim lArA - 1I2! + (A,k,r) 
- ,--..0 -

= h ± (A,k)F ± (A,k ), (16) 

where F ± (A,k) are the known normalized Jost functions 
and the kinematic factor 

h + (A,k ) = }imlAY'" - l12h ± (A,k,r) 
- ,--..0 

= 1T - I122A + 112 exp[ - i(1T/2)(A - 1/2)] 

x r (A + 1)( ± k) - A + 112. 

We can substitute the expression (lOa) with either sign of A 
for f ± (A,k,r) in this limit. 

The limit corresponding to the plus alternative of A is 
easily carried out; we just put r = 0 in the integrands of 
(lOa). The convergence ofthe series in Eq. (lOa) changes in 
the limit; it is absolute and uniform for ReA> I provided 
v _I < 00 and for -1 <ReA < I provided Vo < 00. Because 
of 
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'the minus alternative leads to the expressions 

! ± (A,k ) - h ± (A,k ) 

= 21T- I12 exp[ ±i;0+ ~)1r(A+1)(~yl2-A 
X f ds sA - I f ( - g)n foo dZ I f<X> dj.l(tl)'" 

Jc n= 1 4 Jo J 
f'" f'" foo l k

2 

X Jo dz" - I J dj.l(tn - 1) J dj.l(tn)exp - 4 

X ptl C-Up_: -Vp_
1 

- S_Upl_l_v)J 
(U I + VI - S)"- I (Un _ I + Vn _ I - S)"- I 

X-------:---
(UO + VI - S)A + I (Un _ J + Vn - S)A + 1 

- g1T - 112 exp [ ± i ; (A + + ) J ( ~ yl2 -A 

X r ds s). - I exp( -~) f'" dp(t) w(A,k,t - s) 
Jc. 4s J 
= 1" dr V (r)h ± (A,k,r) q; (A,k,r), (18) 

according to Eqs. (lOa), (6), (4), (1), and (lOb). Here, the 
contours C ± can be deformed rather arbitrarily, since there 
are no limitations as to the choice of the phases 
(argk - r + 1T) which is obliged in the formula (lOa) due to 
the exponential factor eSr'. We see that the properties of the 
Jost functions! ± (A,k) follow frLm those of the function 
w(A,k,s). Therefore, the Jost functions are analytic functions 
of k except for the branch point k = 0 in general and of A in 
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the region ReA > - 1 - K except for the simple poles at 
A. = - 1, - 2, ... , provided the function #( t ) belongs to the 
class M K' Their circuit relations are determined by those for 
the Jost solutions. 

The Jost functions! ± (A.,k) differ from the normalized 
JostfunctionsF ± (A.,k )bythefactorsh ± (A.,k). Ifwechoose 
argk + y = + rr, i.e., - arr < (argk,y) < - rr/4 and 
rr/4 < (argk,y) < arrrespectively we can identify the contours 
C + with the half axes [0,(0) exp( + irr). A substitution 
s ~ exp( + irr)x shows then, that the normalized Jost func­
tions are identical (in the form) to the function a(A.,k,O) of 
Eq. (6b). 

We have demonstrated the direct way of deriving the 
well-known general relation4-6 between the Jost functions 
and the regular solution by the last expression in Eq. (18). 
Substituting the Jost solutions for the regular s01ution in this 
expression, we could derive the other well-known integral 
relation4

-6 between the normalized Jost functions and the 
Jost solutions 

F ± (A.,k) = 1 - i(rr/2k )1/2 eXP[i(rr/2)( A. + + )] 
X Loo dr rll2 V(r) JA (kr)! ± (A.,k,r). (19) 

5. BEHAVIOR OF THE JOST FUNCTIONS AS !J..!--+oo 
(Imk= 0) 

The asymptotic behavior of the Jost functions, which 
plays an important role in the Sommerfeld-Watson trans­
formation, can be best derived from the second expression in 
Eqs. (18). As k is real and ;;;0O, we choose the phases y ± 

determining the contours C + such that rr /2 > =r y ± > ° 
and deform the contours C ± - in such a way that, leaving the 
origin in the y + directions, they stick quickly to the nega­
tive (positive) Yaxis. By the substitution s = exp(=rhT/2)w 
they are transformed into the new contours W ± which co­
incide with the x axis except for the neighborhood close to 
w = 0. The expressions for the normalized Jost functions 
then read 

F + (A.,k) - 1 

- = ± i ( dw I (- .!.)n (00 dZ I i oo 
d#(t l ) ... 

Jw. n = I 4 Jo T 

X Loo dZn _ I 1
00 

d#(tn _ I) 1
00 

d#(tn) 

(uo - Vo ± iW)A - 1"'(Un _ I + Vn _ I ± iW)A - I 
x~~~--~------~~------~---­

(uo + VI ± iwy<- + 1"'(Un _ I + Vn ± iW)A + I 

xexp[~ i tiup_1 + Vp_1 ± iW)-1 
4 p= I 

X (up -I + vp ± iw) -I ] (20) 

[andF*r (A. ·,k) = F _ (A.,k )asexpected). If the deviation of 
the contours W ± from the x axis is small, which means 
exactly that 2!y! < r for any point w = x + iyof W ± ' then 
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either factor in the absolute value 

I (
Up - I + up - I ~ iW)AI 

Up_I +Vp±IW 

= [(Up_I +up_I=ryi+x2](1/2)ReA 

(Up_I + up =ryf +x2 

Xexp{ - ImA. [arg(up _ 1 + Up_I ± iw) 

- arg(up_1 + Vp ± iw)]} (p = 1, ... ,n) (21) 

is less than unity for ReA > 0 and ± ImA. > 0. But these rela­
tions determine the magnitude of the integrands in the ex­
pression (20) as for their dependence on A., so that 
F + (A.,k) - 1 for ReA--+ 00 (ImA. = const.) and for 
±-ImA.--+ 00 (ReA = const.). They diverge asymptotically 

for =r ImA.--+oo (ReA = const.) as one cannot find any al­
lowed (deformed) contour W + ' for which the right-hand 
sides of Eq. (20) would assume a finite value for these 
transitions. 

This conclusion can be corroborated independently by 
the investigation of the asymptotic behavior of the integral 
expression (19), in which the relation (13) and the limit (16) 
prove useful. We do not demonstrate it as it is not so lucid as 
the approach used. 

5. CONCLUSIONS 

According to the approach used the main difference 
between the Jost solutions and the Jost functions, which cor­
respond to the potentials of the general Yukawa and Gaus­
sian type, is the absence of the natural cuts in the complex k 
plane for the latter type. We have also shown, in accordance 
with the general theory4 and unlike the former type, that the 
normalized Jost functions corresponding to the general 
Guassian potentials have the unity asymptotic behavior for 
one of the alternative ImA.--+ ± 00 (ReA = const.) only and 
real k. There is also a different asymptotic behavior with 
respect to the complex variable k in either case. 
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~his paper co~t~~ues our.systematic study of partial inner product spaces. We show here that a 
hnear compatlbthty relatlOn on a vector space V is characterized by special families of vector 
subs~a~es of V, called involutive coverings, and vice versa. This result provides the link between 
partial mner product spaces, defined in an intrinsic way and various concrete structures such as 
ri~ged or nested Hilbert spaces. Given a linear compatibility, generating sets ("rich subs;ts") are 
dlsc~ssed, and several examples are worked out. Finally, we introduce an order relation among 
allltnear compatibilities on the same vector space. 

1. INTRODUCTION 

In the first paper of this series (Ref. 1, to be denoted by I 
in the sequel), we have introduced the concept of partial 
inner product space (PIP-space) in a rather intrinsic way. 
The whole structure is entirely determined by the partial 
inner product and its domain, the so-called compatible pairs 
of vectors. This procedure is, in a sense, the reverse of the 
familiar construction of "super-Hilbert" spaces, such as 
rigged,2 equipped,3 extended,4 or nested Hilbert spaces.5 

Very schematically, there one starts from a family of Hilbert 
spaces and "ties" them together by duality or compatibility 
conditions. As was stated in I, all those structures are actual­
ly particular cases of PIP-spaces. 

The aim of the present paper is to clarify the relation­
ship between the two approaches, and also to work out a 
number of useful examples. In fact we will stay at the level of 
compatibility relations, the inner product itself will play no 
role; in other words, the treatment is purely algebraic, no 
topology will be needed. 

We consider first the "constructive" approach (Sec. 2). 
The essence of the latter is abstracted in the concept of invo­
lutive covering of a vector space. This means, a covering fam­
ily of vector subspaces, stable under finite intersection and 
equipped with a natural involution, which makes it into a 
lattice. Then we show, in Sec. 3, the equivalence of this ap­
proach with the intrinsic one developed in I. More precisely, 
an involutive covering./ of Vuniquely defines a linear com­
patibility # on V, such that the complete involutive lattice of 
assaying subsets Y(V,#) is the lattice completion of'/. 
Conversely, given Vand -#, Y(V,-#) is an involutivecover­
ing of V. In addition, we construct explicitly the complete 
lattice generated by the family of Lebesgue spaces, ./ 
= !L P([O, l);dx),l <p < 00 J or, more generally, any reflex­

ive chain (i.e., a totally ordered family with a natural involu­
tion) of Banach spaces. 

The discussion of Sec. 3 shows that the complete lattice 
y (V, #) of assaying subsets for a given linear compatibility 
# can be, in fact, recovered from much smaller families of 
subspaces. Such generating families, called rich subsets, are 

a)Postal address: Institut de Physique Theorique VCL, Chemin du Cyclo­
tron, 2, B-1348 Louvain-La-Neuve, Belgium. 

analyzed in Sec. 4. Several examples are worked out, all of 
which possess a rich subset consisting entirely of Hilbert 
spaces: sequence spaces, spaces of locally integrable func­
tions, spaces of functions (or sequences) of "prescribed 
growth," i.e., whose behavior at infinity is characterized in 
terms of a fixed family of functions (e.g., functions of polyno­
mial or exponential growth). The existence of such rich sub­
sets in crucial for practical applications; indeed they play the 
same role as bases of neighborhoods or of open sets do in 
topology. They will be studied further, together with topo­
logical properties, in the next paper of the series.6 

In the last section we turn to the problem of comparing 
different compatibilities on the same vector space. A priori 
several order relations may be considered. It turns out, the 
one that is customarily used in lattice theory is useless in the 
present context. Another one is introduced, which says that 
a given compatibility -# I on V is coarser than another one 
#2 iff the complete lattice Y(V,# I) is a sublattice of 
Y (V, # 2), on which the two involutions coincide (involutive 
sublattice). This concept is useful for the construction of 
PIP-space structures on a given vector space V. Most vector 
spaces used in mathematical physics carry a natural (partial) 
inner product, defined on a suitable domain rev X V. 
With trivial restrictions on r (symmetry, biline-;;rity), the 
condition: f #g iff ! f,g J E r, actually defines a linear com­
patibility -# on V. Then all linear compatibilities which are 
admissible for that particular inner product are precisely 
those that are coarser than -#, which in turn are determined 
by all involutive sublattices of Y(V,-#). 

On the other hand, the problem of refining a given com­
patibility (and then a given PIP-space structure) admits in 
general no solution, even less a unique maximal one. A coun­
terexample is exhibited (for a PIP-space of analytic func­
tions), in which two different, noncom parable, linear com­
patibilities have equivalent restrictions to a suitable 
involutive sublattice. However, partial answers to the refine­
ment problem can be given, but some additional structure is 
needed, namely topological restrictions on individual assay­
ing subsets (see Ref. 6). 

Two appendices conclude the paper. In Appendix A, 
we rephrase our basic definitions in their natural mathemat­
ical framework, namely, Galois connections on partially or­
dered sets. The lesson is that, in fact, the linearity condition 
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on a compatibility is not essential at all: The whole theory 
goes through (as already mentioned in I) for a compatibility 
on an arbitrary set. We comment on this in Appendix B, and 
present a few examples which offer new insights into familiar 
subjects (such as topology for instance). 

2. INVOLUTIVE COVERING OF A VECTOR SPACE 

2.1. Definitions: Let A be a partially ordered set, with 
order <. An (order reversing) involution on A is a bijectioq 
r _ r of A onto itself, such that 

(iF = r , V rEA, 

(ii) p>q implies p<ii, V p, q EA. 

In fact, by (i),p>q iffp<ii. 
Let now Fbe a lattice, with lattice operations 1\ and V . 

Then for any involution r ~ r, condition (ii) above is equiv­
alent to 

(iii) p V q = P 1\ ii, V p, q E F . 

In the sequel, we will call involutive lattice any lattice with an 
involution. Similarly a complete involutive lattice is a com­
plete lattice F with an involution r ~ r that verifies: 

(iii') (V rj ) = 1\ -;;, for any family J ~ F. 
r.lEJ rf::.J 

It should be noticed that condition (iii') holds true for any 
involution on a lattice, complete or not, whenever the l.u.b. 
on the l.h.s. exists in the lattice. 

If Fis a (complete) involutive lattice, asubsetFJ ~ F is 
a (complete) in volutive sublattice of Fifit is a sublattice stable 
under the involution. 

2.2. Remarks: (a) An involution should not be confused 
with a complementation: Even if the lattice has a greatest 
element OJ and a least element a = W, one has in general 
r V r =/=OJ and r 1\ r =/= a. 

(b) Complete involutive lattices arise naturally in the 
theory of Galois connections; a summary of the latter ap­
proach is given to Appendix A. 

Now we particularize those concepts to families of sub­
spaces of a vector space V, that is, subsets of !/ (V), the set of 
all vector subs paces of V, ordered by inclusion. Let 
f = I V, J 'Eo Ie !/(V) be such a subset. 

2.3. Definition: The family f = I V, J ,EI C !/(V) is 
called an involutive covering of V if: 

(i) f is a covering of V: u V, = V; 
,e I 

(ii) f is stable under finite intersection; 

(iii) f carries an involution V, ~ V, . 

2.4. Proposition: Any involutive covering of Vis an in­
volutive lattice, with respect to the given involution and the 
following lattice operations: 
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Vp 1\ Vq = VpnVq , 

V p V Vq = Vs where V, = V p n Vij . 

Proof Simple verification that V defines indeed an 
l.u.b. 0 

Notice that, in general, one has V p V Vq ~ V, + Vq , 
i.e., f need not be a sublattice of !/(V): The g.l.b. 1\ is 
always given by set intersection, but the l.u.b. V is deter­
mined by the involution. In the sequel we shall use the nota­
tion Vp 1\ q=='Vp 1\ Vq , Vp v q=Vp V Vq . 

2.5. Proposition: Let f be an involutive covering of V. 
Then every subspace V, E f satisfies the following identity: 

V, = n (ul Vij I Vq E f ,Vq 3 f J ) . 
Je V, 

Proof (a) For any involutive covering, one has 
obviously: 

V, ~ n (ulVijlVqEf,Vq 3fJ). 
JeV, 

(1) 

(b) To prove the inclusion in the other direction, let g be 
a vector in the r.h.s. ofEq. (1). That is, given any hE V, , 
there exists a Vq E f, depending on h (q q(h» such that 
h E Vq and g E Vij . A fortiori we have: 

hE V P(h) = Vq(h)nV, ~ V, , 

g E V P(h) ~ Vq(h) , 

and V p(h) E f, the lattice being stable under intersection. 
Hence 

V V P(h) ~ V, . 
he v, 

On the other hand, every h E V, is contained in some V P(h) , 
so: 

V, ~ u V P(h) ~ V V P(h) . 
hE Vr hE Vy 

Thus V h e v, V P(h) exists in f and equals V, . This implies 
that condition (iii') of Def. 2.1. holds true: 

V, = n V P(h) . 
hE v, 

Since g E V P(h) for every h E V, ,it follows that g E V, . 0 

2.6. Remark: Notice that the set ul Vij I Vq E f , 
Vq 3 f J is in fact a vector subspace of V. For let h,g belong to 
some Vp ,Vij in that union. Thus fE VpnVq = Vpl\q ; hence 
V pV ij belongs to the union also, and h,g and 
Ah + pg(A,p E C) all belong to V pV ij . 

3. LINEAR COMPATIBILITY VERSUS INVOLUTIVE 
COVERING 

In the paper I, we have introduced the notion of linear 
compatibility on a vector space. As we shall see, this concept 
is equivalent to that of involutive covering of Sec. 2. For 
convenience, we repeat here the basic definitions. 
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A linear compatibility on a vector space V is a symmet­
ric binary relation # on V, such that, for every f E V, the set 
[ f) # = [g E V Ig# f I is a vector subspace of V. For any 
subset S k V, we write S # = n JE S [ f 1# . The subsets (in 
fact subspaces) S k V such that S # # = S are called assay­
ing subsets; they are precisely the sets of the form S = Z # , 

for some Z k V. We denote by Y (V, #) the family of all 
assaying subsets, ordered by inclusion. Then the basic result I 
reads (see also Appendix A): 

3.1. Theorem: Let Vbe a vector space with a linear com­
patibility #. Then the family Y(V,#) of all assaying sub­
sets is an involutive covering of V, with the involution V, +-+ 

V" = (V,)# . Moreover, Y(V,#) is a complete involutive 
lattice with the following lattice operations: 

1\ Vj = n Vj , V Vj = ( L Vj )##. 
lEi lEi lEi jEJ 

(2)0 

Conversely, if we start with an involutive coveringJ of 
V, we can associate to it a linear compatibility such that 
Y(V,#) is the lattice completion of J. 

3.2. Theorem: Let Vbe a vector space with an involutive 
covering J. Consider in the Cartesian product V X V the 
subset L1 = u v, E.r V, X V" and define f #g to mean 
[f,gIELi. Then: 

(0 # is a linear compatibility relation; 

(ii) J is an involutive sublattice of Y(V,#); 

(iii) Every element of Y (V, #) is an intersection of ele­
ments of the form {nv, E.f' V,}# where J' k J, i.e., 
J(V,#) is the complete involutive lattice generated by J 
through unrestricted lattice operations. 

Proof (i) is easily verified. In order to prove (ii), notice 
thatEq. (1) can be rewritten as V" = (V,)# = n JE VI< [J I # . 

This means that all subspaces V, E J are assaying subsets 
and that the involution V, +-+ V" coincides with the involu­
tion V, +-+ (V,)# . In order to prove (iii), we show first that, 
for every h E V, one has: 

(3) 

Indeed, by (i), and Remark 2.4. we have: 

[h 1# =u[ V" IV, EJ,V,:3 h I 
= L [ V" I V, E J , V, :3 h I 

so that 

{h ) ## = ( L [ V" IV, E J, V, :3 h » # 

= n { V, IV, E J, V, :3 h ) . 
To conclude, it suffices to notice that an arbitrary element 
VqEY(V,#) can be written as: 

Vq = n [h ) # = n (n[ V, IV, E J, V, :3 h »# . 0 
hEVq hEVij 

3.3. Remark: Of course, if the set J is finite, 

270 J. Math. Phys., Vol. 21, No.2, February 1980 

Y(V,#) = J. This case, although trivial in the present 
context, is important for applications. Indeed it covers al­
ready such concepts as rigged,2 or equipped Hilbert spaces, 3 

which are widely used in practice. See, e.g., Ref. 7 for an 
analysis of some quantum mechanical Hamiltonians in a 
five-element scale of Hilbert spaces. 

Theorem 3.2 makes contact between the abstract for­
mulation of I and the more concrete "constructive" ap­
proach developed previously for particular cases such as 
chains (or scales) of Hilbert or Banach spaces,8.9 nested Hil­
bert spaces,5 or rigged Hilbert spaces.2 In all of these situa­
tions, the starting point is a family of vector spaces [ V, I 
which form an involutive lattice (or a scale), and Vis defined 
as u, V, (technically, algebraic inductive limit). Theorem 
3.2 shows that the two approaches are, in fact, equivalent. In 
other words, it makes clear that the concept of partial inner 
product space is a genuine generalization of all these particu­
lar structures. 

It also follows that all we need is an involutive covering 
of V, the complete lattice Y(V,#) is then uniquely deter­
mined. In most cases, the lattice completion will remain im­
plicit, for Y (V, #) is uncomfortably large. (This is just like a 
topology: One can seldom exhibit explicitly "all" open sets!) 
But in certain cases, an arbitrary assaying subset may be 
described, as will be clear from the following examples. 

3.A. Example: Sequence spaces 

As in I, Example 4(2), consider V = w, the space of all 
complex sequences, with the compatibility 

(x,,)#(Y,,)<==> L Ix"y" I < 00 • 

" 
An assaying subset is precisely a perfect sequence space, as 
defined by Kothe. 10 This example shows how big and un­
practical the complete lattice Y(V,#) can be: This set 
.'7(w,#) contains almost all possible types of topological 
vector spaces, many of them with rather awkward properties 
(it is Kothe's main source of counterexamples!). Thus it is 
imperative to restrict ourselves to suitable subsets of 
Y(w,#). 

We will consider, in particular, the family J of all as­
saying subsets ofthe form 

fl(r) = {(x,,) Ewl(x"r,,-1/2)E fl) , 

where r (r ,,) is an arbitrary sequence of positive numbers. 
Then J is an involutive covering of w: 

(i) J is a covering of w: Given (x,,) E w there is a weight 
sequence r = (r ,,) such that (x,,) E fl(r ) ; take, for instance, 
the following weights: 

·r II = Ix" 1
2n2 whenever x" #0, 

·r n arbitrary whenever x" = 0 . 

(ii) J is a lattice for the following operations: 

fl(r) 1\ fl(s) = ('2(p) where p" = min [r ",s" I ' 
fl(r) V fl(s) = fl(q), where qn = max[ r n ,s" I . 
(iii) J is an involutive lattice, with the involution 
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r ~ r = (r n-
I 

) • Indeed: 

[ t2( p) ] # = t2(i) = t2(1-) V t2(S) , 

[t2(q)] # = t2(ij) = t2(1-) v t2(S) . 

Actually it turns out that J is a sublattice of X'(w), i.e.: 

t2(r) 1\ t2(s) = t2(r) n t2(s), 

t2(r) V t2(s) = t2(r) + t2(s). 

This is an example of a fairly general situation that will be 
studied systamatically in the next paper of this series.6 

According to Theorem 3.2., we can now consider the 
compatibility #f corresponding to the family J. We will 
see in Sec. 4 that, in fact, #f = # ,and thus the complete 
involutive lattice generated by J = 1 t2(r ) J consists of all 
perfect sequence spaces. 

3.B. Example: Lebesgue spaces 

As a second example, consider the family of Lebesgue 
spaces over the interval [0,1] with their usual norm topology: 

J = 1 L P = L P( [0,1 ];dx), 1 < p < 00 J . 

These spaces form a chain: p > q implies L peL q , the em­
bedding is continuous and has dense image. With the 
involution 

L P~(L P)' =L P, p-I +ji-I = I, 

J is an involutive covering of the space V = u l < P < 00 L P • 

Given the corresponding compatibility #, i.e., (L P)# 
= L P, we can compute explicitly the complete involutive 

lattice Y(V,#), using the results of the extensive study by 
Davis et al. II 

Remark: Notice that we differ slightly from these au­
thors, in that we do not include the space L I: By symmetry 
this would demand inclusion of Lao as well, which would 
invalidate some of the statements made below about duality 
properties. However, their results apply to our case also, 
because the first Eq. (4) holds true also with the definition 
S=(I,t)uS. 

First we evaluate "elements of the first generation" of 
Y: 

L PeS) = n L P, L I(S) = n L P, 
pES pES 

where S is an arbitrary subset of (1, 00). Introducing 
r = inf S, t = sup S, and defining S = (1,t) uS, 
S = (r , 00 ) u S, it is shown in Ref. 11 that: 

LP(S)=LP(S), LI(S)=LI(S). (4) 

This leaves us with four possible cases: 

(i) tES~S=(I,t] andLP(S)= n Lq=L ' ; 
I <q <I 

(ii) ti.s~S=(1,t) andL P(S) = n Lq=L ' -
i<q<t 

(iii) rES ~ S = [r, 00) and L 1 (S) = u L q = L r ; 
r <.q < 00 

Thus we get two new types of spaces, L P ± . Their topo-
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logical properties are based on the observation that, in the 
definition of L P - ,it is enough [by Eq. (4)] to consider a 
cofinal countable subset of the Vq's . Then, using the termin­
ology of Floret and Wloka (Ref. 12, §9), L P - is a strict FG­
space. Therefore, we get 

(i) For 1 < p < 00, L P - - n L q , with the projec-
1 <q< p 

tive topology, is a non-normable, reflexive Frechet space, 
hence barrelled and complete, with dual (L P -)' = 
(L P -)# = L P + . In particular, L oc - coincides with the 
space L W of Arens. 13 

(ii) For 1< p < 00, L P+ - u p <9<ooL q, with the in­
ductive topology, is a nonmetrizable (Mackey) complete, 
barrelled topological vector space, with dual (L P + )' 

= (L P +)# = L P - • 

(iii) Furthermore, the following inclusions are proper: 

L P + <;; L P <;; L P - (1 < p < 00) , 

the embeddings are continuous and have dense image. 

3.4. Proposition 14: Let J be the chain 
IL P ,1 < p< 00 J . Then the complete lattice Y(V,#) gen­
erated by J is also a chain, obtained by replacing each L Pin 
J by the triplet L P + C L peL P - ,and adding the small­
est element L 00 - and the largest element L I + . 

Proof First we evaluate elements of the form 1 I J # # , 

then 1 I J # , and finally arbitrary elements of Y (V, #) 
through the usual relation: 

Y(V,#)3Vr = n I/J#. 
IE V, 

Let lEV. Then, by Eq. (3) 

1 I J # # = n L P = L if or L if -, for some q E (1, 00) . 
L POll 

Therefore 1 I J # = L q or L q + for some q E (1,00). Finally 

Vr = nil J # = ( n L q)n( n L r + ) , 
lEV, qES rET 

where S,T are some subsets of (1, 00), to be replaced by sf 
respectively. 

For the first term on the r.h.s., we get 

n L q = n.L q = L S or L S -. with s = sup S. 
qES qES 

As for the second term, we observe that r I < r 2 implies 
L r 2 + C L r 1 + with continuous embedding; the set inclu­

sion is obvious, and the embedding L r 2 + ---+ L r 1 + can be 
factorized continuously through L r , where r is any real 
number such that r I < r < r 2 • Therefore all the spaces 
L r + ,1 <r < 00, form a chain with continuous embeddings. 
Thus we get 

n L r + = L 1 +, where t = sup T. 
rE T 

Finally, Vr is either of the form L SnL 1+ ,or of the form 
LS-nL 1+. For s<t, we haveLs- ~L s~L 1+ and Vr = 
L ' + .Fors>t,wehaveL ' + ~LS- ~Ls,sothatVr = 
L S or Vr = L S - • This concludes the proof. D 

J.-P. Antoine 271 



                                                                                                                                    

3.C. Generalization: Reflexive chains of Banach spaces 

Let 10 = (a,b ) be an open interval of R, and for each 
p E 10 let there be a reflexive Banach space Vp . We say that 
the family f = \ V pIp E In is a (continuous) reflexive chain of 
Banach spaces if the two following conditions hold: 

(i) p < q =? V p ~ Vq , the inclusion map is injective and 
continuous; 15 

(ii) 10 carries an involution p +---> p such that the dual of 
V p is norm-isomorphic to V p:( V p)'~ V p . 

The following properties follow easily from the definition 
(see also Ref. 6): 

(a) f is an involutive covering of V - up E 10 V p ,corre­
sponding to the compatibility (V p)# = V ji • 

(b) Whenever p <q, the inclusion map Vp - Vq has 
dense range and each V p is dense in V (considered as the 
inductive limit limpE~' V p ). 

(c) V# n pE 10 V p is a dense subspace of every V p , 
and of Vas well. 

Let now I = [a,b) be a closed interval. The analogous 
definition is obvious, the only difference being that, now 
V # = Va ,V = Vb . Within this context, a proposition simi­
lar to 3.4. can be formulated. As before we define 

Vp = u Vq , V pO V p' V p+ - n Vq • 
q< p p<q 

Let Fa be the totally ordered set Fa = (a,b ) X [ - ,0, + I 
with its lexicographic order ( - < ° < + ). Then we have: 

3.5. Proposition: Let f = \ V p J pEl be a reflexive chain 
of Banach spaces. Then the complete involutive lattice 
:7 = Y(V,#) is a chain given explicitly as follows: 

(i) If 1= (a,b) is an open interval, Y consists of V# 
Va I ,Yo, V Vb _ , where Yo is a chain indexed by Fo . 

(ii) If 1= [a,b) is a closed interval, Y is the chain 
V# - Va ,Va 4 ,YO ,Vb"" ,V= Vb . 

Proof The argument is exactly the same as the one giv­
en in Proposition 3.4 for the case of Lebesgue spaces. First 
one shows (using the involutionp +---> ji) that the inclusions 
V p _ C V po C V p + are proper. Then, one proves that 
V p + ,with the projective topology, is a reflexive Frechet 
space, with dual V ji _ ,and V p_ ,with the inductive topol­
ogy, is a reflexive nonmetrizable, barrelled topological vec­
tor space, with dual Vp + . The rest of the argument is then 
identical and gives (i); as for (ii), it is obvious. 0 

The situation described above is in fact extremely fre­
quent in applications. The following examples of reflexive 
chains of Banach spaces are all well known (the first two 
have the direct order, all the others the inverse order): 

(1) the chain of sequence spaces [ fP , 1 < p < 00 J ; 
(2) the chain of ideals of compact operators in a Hilbert 

space H: \ Y;; P(H) , 1 < p < 00 J, which is isomorphic to (1) 
(see I, Example 4.7); 

(3)thechainofSobolevspacesJY~s (- 00 <s< (0) de­
fined as follows 16.17: A tempered distribution fE.Y"(R n

) be­
longs to dY, if its Fourier transform j verifies 

f d ns 1 j ( 5) 12(1 + 1 S 12)' < 00; 

the involution here is (dY'J# = (dY,)' = dY' _ s; 
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(4) any chain of Hilbert ian spaces, as defined by Palais;~ 
(5) in particular, the chain of Hilbert spaces Y P 

(- 00 <p < (0) in Bargmann's space ~/, 18 defined as fol­
lows: .7 P consists of all those entire functions fez), z E en , 
such that 

L, 1 f(z) 1 2(1 + IzI2ye-lzi'd"z<00 

and ~/ = upE IR Y-p [see I, example 4.8 (b»); 
(6) a chain of Banach spaces that generalizes the Lebes­

gue spaces L P to algebras of unbounded operators has been 
constructed by Inoue. 19 

3.6. Remark: The general considerations given in Secs. 
1 and 2 were purely algebraic, no topology was mentioned, 
except for the explicit examples ofSecs. 3.B. and 3.C. Here 
topological duality was used as a means of defining an ade­
quate involution. We will come back in the next papero to 
this alternative approach, closer to Refs. 2 and 5. 

4. RICH SUBSETS OF Y(II,#) 

We have seen in Sec. 3 that an involutive covering on a 
vector space Vunique1y determines a linear compatibility on 
V. Actually even less is needed: Any family of subsets of V 
that allows to reconstruct the compatibility will suffice. Con­
sidering the fact that the full lattice Y is in general much too 
large for practical purposes, this result will be most useful for 
applications. In this section, we will briefly analyze the ab­
stract situation, then exhibit a number of examples. 

4.1. Definition: A family fa of subsets of Vis called rich 
for the linear compatibility # if, given any compatible pair 
f,g E V, there existsS E fo such thatfE S # andg E S ## . 

Notice that elements of fo need not be vector sub­
spaces of V: The involution automatically generates them. 
But richness is not lost in the process. Indeed, if we define the 
three following sets: 

f~#) = [S#ISEfa 1 ,f6##) = [S##ISEfa 1, 
f = f6#) Uf6##) , 

we have (the proof is straightforward): 
4.2. Proposition: Let /" be anyone of f6#) ,f6##) ,f. 

Then: 
(i) /" is a subset of Y (V, # ):, 
(ii) /" is rich and covers V: USE I'S = V, 

(iii) V# = n S. 0 
S~ ; 

The lesson is clear: If f 0 is rich, and f I ::) fa , then 
f I is also rich. This allows one to enlarge a rich subset by 
"closing" it with respect to some algebraic operation: In­
volution (which gives f), lattice operations, or both. In the 
latter case, we get the involutive sublattice of Y(V,#) gen­
erated by fa, which is an involutive covering. Anyway 
there is no loss of generality in assuming a rich subset to 
contain only assaying subsets (although for some applica­
tions it might be more convenient not to do so). 

Remark: The above definition may also be phrased as 
follows. A family f of assaying subsets is rich iff relation (1) 
in Proposition 2.5 holds for any assaying subset V, ,or, 
equivalently, relation (3) of Theorem 3.2 holds for any h E V. 
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The main reason for introducing rich subsets of 
Y(V,#) is topological. Namely, arbitrary assaying subsets, 
equipped with their Mackey topologies, may be difficult to 
handle, whereas it is easy in most cases to find homogeneous 
rich subsets, that is rich subsets f whose elements are all of 
the same type, such as Hilbert spaces or reflexive Banach 
spaces. A number of examples are given below. Such rich 
subsets will be studied in the next paper. 6 

4.A. Example: Hilbert spaces of sequences 

We take again Example 3.A, and show that 
f = ! f'2(r ) I is a rich subset of Y (w, #) consisting of Hil­
bert spaces only. Letl,g E w withl #g, i.e., 
};: ~ I II "g" I < Cf) . Define a partition of nEN into four dis­
joint subsets as follows: 

NI = {n EN lin #0, g" #OJ , 

N2 = {nEN II" =0, g,,#OJ, 

NJ = !nEN II" #0, gn = OJ, 

N4 = !nEN II" =gn =01· 

All four subsets may be finite or infinite. Let s = (sn) be an 
arbitrary square integrable sequence, with nonzero ele­
ments. Then define a sequence of weights, r = (r '1)' as 
follows: 

· for n E NI , r '1 = 11'1 I Ig" I -I , 

· for n E N2 , r n = Is" 12 Ig" I -2 , 

.fornEN3 , rn = 11,,1 2 Isnl-2
, 

· for n E N4 , r '1 > 0 , arbitrary. 

Then IE f'2(r ) , g E f'2(r- 1 
) ; indeed 

Illnl 2rn- 1 I Ilnl 2r n-
1 

n=t r1eN 1 uN" 

I Ilnllgnl + I ISnI2<Cf) , 
nEN] nEN" 

I 11'1 I Ign I + I ISn 12 < Cf) . 
neN, neNz 

4.B. Example: Locally integrable functions 

Let V = L Iloc (Rn ,dnx) ,thespaceofall functions on Rn 

locally integrable with respect to the Lebesgue measure. 
With the compatibility. 

1# g'¢::=:} J If(x)g(x)1 dx < Cf) 

one has, as usual, [I, Example 4(5)] V# = L :'mp(Rn ,d nx ), 
the essentially bounded functions of compact support. 

Let r :Rn 
---+ R + be a measurable, a.e. positive function, 

such that both rand r = r -I are locally integrable. Denote 
by L 2(r) the space of measurable functions/:Rn 

---+ C such 
that Ir -1/2 is square integrable. Then we claim: 

(i) L :'mp C L 2(r) C L toe ; 
(ii) the family of all such L 2(r) is a rich sub lattice of 

Y(V,#). 
Part (i) is a straightforward verification. As for (ii), 
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write Rn in the form: Rn = uJ= I fl j where fl j = 
!x E Rnlj -1< Ixl < jJ . Thuseachfl j is relatively compact 
andfl jrUlk = 0if j#k. Letl,gE V,f#g, and {a j) , I /3j J 
two arbitrary sequences of positive numbers such that: 

Define 

r (x) = I X j(x)r j(x) , 
j=1 

where 

r j(x) = sup (/3j'I/(x)I)/ sup (a j,lg(x)i). 

X j is the characteristic function of fl j . (Remark: Elements 
of Vare in fact classes of equivalent functions; ifin the defini­
tion of r j lor g is replaced by a equivalent function, so is r j , 
and nothing changes in the argument.2~ Thus r -I (x) = 

};t= I X j(x)r j-I (x) ,and both rand r -I are locally integra­
ble. Furthermore, it is easily shown that I E L 2(r ) , 
gEL 2(r) . For instance: 

f 1/12r-ldnx=Il 1/12 sup(ajlg\) dnx 
JII" j= I n J sup(/3j,lfl) 

\~1 LJl/lsuP(aj,lgl)dnX 

j~l (L)n iXilg(X)I>,,)lgl dnx 

+ 1 ajl/l dnx) 
n,nlxllg(x)l<a)1 

'j~I(L) Ilgl dnx +a j L) III d"X) 

= i)lgl d"x + jtlaj L)lfldnx< Cf) . 

Thus {L 2(r ) I is rich in L I~ • Moreover it is an involutive 
sublattice of Y(V,#), with the following lattice operations: 

·L 2(r) k L 2(S) ~ r (x), sex) a.e., 

.L 2(r) /\ L2(s)=L2(p), withp(x)= inflr(x),s(x)j, 

·L 2(r) V L 2(S) = L 2(q), with q(x) = sup! r (x),s(x) j , 

. [L 2(r) ] # = L 2(r), with r (x) = r -, (x) . 

4.3. Remark: The above result generalizes to the space 
L ,10c (X,dp), where X is a locally compact and u-compact 
space (i.e., X = u"Kn ,Kn C Kn +, ,K j relatively compact) 
and Jl is a non-negative Radon measure on X. A similar re­
sult holds with V = L foe (hence V # = L ~omp) and r ± 'E 
L ~oc (instead of L ,~) . Also if X is compact, i.e., 
V = L l (X,dp) , V# = L OO (X,dp) , the statement is simply 
that the family ! L 2(r ) , r ± 'd 1 J is rich. 

4.C. Example: Functions or sequences of prescribed 
growth 

The result of Example 4.B can be improved if V is re­
stricted to those locally integrable functions which satisfy a 
growth condition at infinity (such as functions, or sequences, 
of polynomial or exponential growth), in the sense that the 
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weight functions r (x) can now be assumed to have the same 
type of growth. 

More precisely, for X and fl as above, let A be a partially 
ordered set and let [ pta) ,a E A J be a family of positive fl­
locally integrable functions, indexed by A and monotonical­
ly increasing in a: 

a< [3 ¢=::::> F(a)(x) <F(f3)(x) (p,- a.e.) . 

Assume furthermore that, given a, [3 E A, there exists a posi­
tive square integrable function Sa {3 which verifies the follow­
ing inequality for some positive constant Ca {3: 

o <s~{3(x)<Ca{3F(a)(x)F(f3)(x) (p,- a.e.). (5) 

Define Vas the vector space of those functions 
f E L loe (X,dfl) which grow no faster than the functions F(a) , 
i.e., f E V if there exists aEA and a constant c> 0 such that: 

I f(x) I <cF(a)(x) (p,-a.e.). 

Equip V with the compatibility # inherited from L ]Ioe . 

Then: 
4.4. Proposition: Let V, # as above. Consider the family 

f = ! L 2(r) J , where each r is a weight function that veri­
fies the following inequalities for some a, [3EA and positive 
constants c' ,c" : 

C' [sa {3(x)1 F (3 (x)] <r 1/2(X)<C" [F(a)(x)/sa {3(x)]. (6) 

Then the family of is a rich subset of 5T (V,#). 
Before proving the statement, let us give a few 

examples. 

(i) Functions of polynomial growth [in L ]Ioe (Rn , d nx )]: 

F(a)(x) = (1 + Ix 12)a/2 aE'l or R, 

sa{3(x)=(1 + IxI 2
)-YI2 

with r> nl2 and r> - !(a + [3). 

The assaying subsets L 2(r a {3) obtained in this example actu­
ally form an involutive sub lattice of Y(V,#) (see Hor­
mander, 16 Theorem 2.1.1.). 

(ii) Slowly increasing sequences (in w): 

By the same reasoning, we find that the family [ (l(r ) J ' 
where r = (r n) is a sequence of tempered weights, i.e., 

c'(l + n) - {3<r n <c"(l + n)", c',c" > 0, 

is rich in the space s' of slowly increasing sequences, 
equipped with the standard compatibility from w. 

(iii) Functions of exponential growth [in L ]Ioe (Rn , 
dnx)]: 

F(a1(x) = e'zlxl, a E R 

saP(x)=eylxl , withrER, r >a+ [3. 

(iv) Entire functions of order 2 (in Bargmann's space 
~' 18): 

As in Sec. 3.B, example (5), take X = en , with Gaussian 
measure dfl(z) = e --Izj' dz; then ~'consists also of those en­
tire functions with growth indexed by the following family: 

F(a)(z) = el/zlzl'(1 + IZ I2) - a12, a E R or '1. 

sa {3(z) = 1, 'tJa,[3. 

ProofofProposition 4.4: Let I f(x) I <cF(a)(x) , 
Ig(x) I <C'F(Pl(X) , andSx I f(x)g(x) I dfl < 00 . We choose a 
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function sa{3EL 2(X,dfl) that verifies Eq. (5). Then we pro­
ceed as in Example 4,A, dividing X into four disjoint subsets 
Xj , j = 1, ... ,4, depending on whether 

If(x)l- [s~{J(x)IF(,B)(x)]>O(XI andX3 ) or <O(Xz andX4 ), 

Ig(x) I - [s~{3(x)IF(al(x)]> O(XI andX2 )or <0(X3 andX4 ). 

We define a weight function r a {3 as follows: 

r ,,(J(x) = I f(x) I Ig(x) I -I, XEXI 

= s~ {3(x) Ig(x) I -2, XEX2 

= I f(x) 1
2s ~~(x), XEX3 

= arbitrary for x E X 4 provided Eq. (6) is verified. 

It is then straightforward to verify that f E L 2(r a (J) , 

gE L 2 (r (1 {3) ,and also that r a {3 verifies Eq. (6) on all of X. 0 

4.0. Two counterexamples 

(i) The family! 1'1' 114 ps ~ is not rich in r , with the 
compatibility from w. Indeed we have: 

f= [(log n) -I] belongs to r , but not to 
r - = u

P
<_ oc fP , 

g === [(n log n) -I ] belongs to (I + = (II < P4 00 fP , but 
not to (I , and yet 

k:~1 Ifngn I = k'~~1 n- l (logn)-2 <00 by Ref. 21. 

This example carries over immediately to the ideals '1ff p 

(1 < p< 00 ) of compact operators in a Hilbert space [cf. Sec. 
3.B., example (2)]. 

(ii) The family [{l(r (k I) 1 k E z where r ~k) = n k 
, is not 

rich in the space s', for the same compatibility. Take indeed: 

fn =n'andg" =n-1-I(logn)-1 0(8) 0). 

Then 

I If"g" I = I n -I (log n)-l-b < 00 , 

n -- I n = ] 

but there is no k E '1. such thatf E {!l(r (k I) and g E {l(r (k I): 

I I f" 12[r~k)] --I = I n 21 - k < 00, iff k> 21 +1, 
n = 1 n = I 

I Ign 12r ~,k) 
11=1 

= In k - 2'--2(logn)-2-20 <00, iffk<21+1.21 
n=1 

It is interesting to notice that further enlarging the fam­
ily of weights does not improve the situation, as long as it 
remains totally ordered: For instance, if one uses [r (k,j) 1 
with r ~k_j) = nk(log n)j ,a similar counterexample can be ob­
tained. The moral is that whenever the compatibility # is 
given by absolute convergence of a series or an integral, no 
totally ordered subset of Y(V,#) will be rich: Two vectors 
f ,g may be compatible, not because one is "good" and the 
other is "bad", but because there are cancellations between 
f" and gn . An extreme example is that of two wildly in­
creasing sequences,J and g, such that f 2m = 0 and 
g2m +1 = 0 for all m. Simpler yet, the complete lattice gener­
ated by a totally ordered subset will be totally ordered, i.e., a 
chain, while Y(V,#) is not (compare Sec. 3.B). 
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5. COMPARISON OF COMPATIBILITY RELATIONS ON A 
VECTOR SPACE 

One of the main reasons to consider partial inner prod­
uct spaces is the possibility they offer to control very singular 
operators. For this purpose the question frequently arises as 
to whether a given compatibility relation is "fine" enough 
for a particular operator, or, on the contrary, too fine in that 
it leads to an unmanageable lattice of assaying subsets. What 
we need is obviously a way of comparing different compati­
bility relations on the same vector space. 

Let Vbe a vector space, # 1 and # 2 linear compatibil­
ity relations on V. We will say that # 1 is weakly finer than 
#2 , say, if # 1 has more compatible pairs; equivalently, 

1#2gimplies 1# Igfor any pair I ,gEV, orS#' ~ S#' for 
any subset S ~ V. This relation is a partial order on the set 
Comp( V) of all linear compatibility relations on V (see also 
Appendix A). Actually, Comp(V) is even a complete lattice 
for this order, sinee it is stable under arbitrary intersections 
and has a greatest element :#. Here, intersection is defined as 
follows: S 1\ .. ,#, = niE1S #, for an arbitrary subset S ~ V. 
The greatest element is the trivial compatibility # for which 
every pair of vectors is a compatible pair: 

I#g, V/,gEVor I/l# = V, V/EV. 

The lattice Y(V,:#:) has only one element, namely V itself. 
Thus Y(V,#) is not a subset of Y(V,:#:), for any # E 

Comp(V); more generally, a weakly finer compatibility does 
not lead to more assaying subsets. As a consequence, this 
ordering ofComp(V), although standard in the context of 
Galois connections (see Appendix A), is useless for our 
purposes. 

Before passing to a stronger order, it is instructive to 
exhibit an example of two compatibilities, which are not 
weakly comparable. 

5.1. Example: Let 'el' be Bargmann's space of entire 
holomorphic functions defined on the complex plane. Define 
the following compatibilities on 'elf: 

1#lg iff J/f(Z)g(Z)le- 1ZI2 dZ<oo, 

1#lg iff ! n!lanbnl<oo, 
n=O 

where I(z) = };:~ oa"z" and g(z) = };: ~ ob"zn . Let now 
I(z) = exp(i Z2) and gl (z) = exp(~ Z2) . Then I and gl are 
# 1 -compatible, but they are not #2 -compatible. On the 
other hand, ifg2 (z) = zexp(~z2) , then I andg2 are (trivially) 
# 2 -compatible and they are not # 1 -compatible. Hence # 1 
and #2 are not comparable in the weak sense. 

As discussed above, a good order on Comp(V) must 
satisfy the two following conditions: If # 1 is finer than # 2 , 
then #2 -compatible vectors should be # 1 -compatible (i.e., 
finer implies weakly finer) and Y(V'#2) should be a subset 
of Y(V,# I) . However, these requirements are not suffi­
cient for a comparison of compatibilities. It is essential that 
the involution in Y (V, # 2) be the restriction of the involu-
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tion in Y(V,# I) . This condition leads to the next 
definition. 

5.2. Definition: We shall say that # 1 isfiner than # 2 , 
or that #2 is coarser than #1 (#2<:#I)ifY(V'#2)isan 
involutive sublattice of Y(V,# I) . 

A simple criterion for comparing two compatibilities on 
V is given by the following result. 

5.3. Proposition: # 1 is finer than #2 iff 

S #,#, = S #,#, (7) 

for every subset S ~ v. 

Proof We know that A ~ Vbelongs to Y (V, # i) if and 
only if A = B #i#'forsomeB ~ V, or equivalently, A = C#, 
for some C ~ V. Thus Eq. (7) means that every element 

S #,#, of Y(V'#2) belongs to Y(V'#I)' Furthermore, for 
any D = S #2EY(V'#2) , one has D #, = D #, . This proves 
that Y(V'#2) is an involutive sublattice of Y(V,# I) if and 
only if Eq. (7) holds for every S ~ V. 0 

5.4. Corollary: If #2 <:# 1 , then S #2~ S #, and 
S #,#, ;;;:) S #,#, for every subset S ~ V. In particular, 
I #2g implies 1# Igfor any l,gEV, i.e., # 1 is weakly finer 
than #2 . 

Proof From Eq. (7), one gets, for any S ~ V 

S#, = S#,#,#, =S#'#'#' ~ S#', 

where the inclusion follows from S ~ S #,#, . In particular 

for S = I I J, this gives I I 1 #, ~ f I J #, . Furthermore, us­
ing Eq. (7) again, we have 

S#2#' = S#2#' ;;;:) S#'#'. o 
What about Comp(V)? First, the relation <: is a partial 

order on it, as can be checked immediately. Then Comp( V) is 
inductively ordered, i.e., every totally ordered subset 
I #" J nE} has an upper bound # oc , defined as follows: 

1# oc g iff there exists nE.! such that 1# n g . 

Equivalently, S #, = unE}S #" , for any S ~ V. Therefore 
Zorn's lemma applies: Every element ofComp(V) is major­
ized by a maximal element. However, there is no greatest 
element. The only possible candidate would be :#, for which 
S # = V for every S ~ V. But Eq. (7) implies that :#: cannot 
be finer than any # E Comp(V), except itselfl In fact, 
Comp(V) is in general neither directed to the left, nor to the 
right, a lortiori it is not a lattice. 

Let again # be a linear compatibility on Vand let f be 
a rich subset of Y (V, #). As was remarked after Proposition 
4.2, we may always assume that f is an involutive sublattice 
of Y(V,#), i.e., an involutive covering of V. Moreover, by 
Theorem 3.2, Y(V,#) is the lattice completion of f. 

What happens now if we start from a sublattice f co­
final to Y(V,#), but not rich? Again by Theorem 3.2, we 
can associate to f a new compatibility relation #.Y , such 
thatf generates the complete involutive lattice Y (V, #.Y ) . 
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Then it is easy to see that .7(V,#,F) is actually a complete 
involutive sublattice of .7(V,#); in other words, #,F < # . 
This result in fact gives a description of all compatibility 
relations on V coarser than a given one #, namely: 

5.5. Theorem: Let V,# be as usual 

(a) Let f be a cofinal involutive sublattice of .7(V,#). 
Then the compatibility #,F determined by f is coarser than 
#:#,f';;;# . 

(b) Conversely, if # 1';;;# , then there exists a sublattice 
f ~ .7(V,#) cofinal with.7 and stable under the involu­
tion, such that #,f = # I . 0 

Thus, given #, a compatibility relation on V, coarser 
than #, is the same thing as a complete involutive sublattice 
of .7 (V, #). The set of all of these is stable under intersection 
and it has a greatest element, namely .7 (V, #), hence this set 
is itself a complete lattice contrary to Comp( V). It has also a 
smallest element. .7 (V, #0) consisting exactly of V # and V, 
and corresponding to the trivial compatibility relation #0 
defined as 

1# og iff at least one of them belongs to V # . 

In a sense this trivial compatibility relation correponds, in 
our language, to the standard situation of the theory of dis­
tributions: Only two kinds of objects are available, test func­
tions (V #) and distributions (V). 

Let us give a few examples of comparable compatibility 
relations. 

5.6. Examples: (i) We have already encountered non­
rich sublattices in Sec. 4. Take for instance, the functions of 
polynomial growth of Example 4.C (i): The set 
f= {L 2(r/l),r/l(x)=(l + IxI2t!2,DElRl is not rich. 
The same example in the discrete case was given in 4.C (ii). 
In each case, f defines a new compatibility relation, coarser 
that the original one. Additional examples (for sequence 
spaces) can be found in Ref. 22. 

(ii) As pointed out at the end of Sec. 4, no totally or­
dered subset will be rich for a compatibility which is defined 
by absolute convergence of a series or an integral. Barg­
mann's space 'IJ' illustrates this point beautifully. Three 
compatibilities arise naturally on 'IJ': #1 and #2 ,as de­
fined in Example 5.1, and # 3 defined by the chain 
[.7 P ,PElR I described in Sec. 3.B, example (5). Then it can 
be checked easily that # 3 is strictly coarser that both # I 

and #2: Neither the pair I,g I nor the pair 1,g2 are # 3-

compatible. Indeed, both I and g I belong to .7 P iff P < 0, 
and g 2 E.7 P iff P < -1. 

The main application of Theorem 5.5. is to the con­
struction of partial inner product spaces. Given a vector 
space V, one can define a partial inner product on V directly. 

5.7. Definition: A partial inner product on a vector space 
Vis a Hermitian form defined on a domain r ~ V X V, such 
that: 

(i) r is symmetric: !f ,g I E riff {g,j I E r. 
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(ii) r is "partially linear": For every lEV, the set 
{gl {/,g I E r I is a vector subspace of V. 

Typical examples are all those partial inner products whose 
domain of definition is defined by the absolute convergence 
of a series or an integral; such are, for instance, the "natural" 
inner products on lU, L 110e (X,df.l) or 'IJ' obtained by extension 
of the inner product of a Hilbert space. 

According to this definition, a partial inner product 
uniquely defines a linear compatibility relation #: 

I#giff (/,gl E r. 
However, quite often the complete lattice .7(V,#) generat­
ed by # is too large, and thus one is led, for practical pur­
poses, to consider a coarser compatibility relation on V. The 
point of Theorem 5.5. is that, first, one knows all possible 
candidates, and second, each of them can be used as a do­
main for the initial partial inner product. In particular, if the 
latter is nondegenerate, i.e., (V #) = (O I ' it will remain so, 
whichever coarser compatibility # lone chooses, including 

the trivial one, #0 , for which V#o = V#· = V# . 
Theorem 5.5 solves the problem of coarsening a given 

compatibility relation on V. In practice, the converse prob­
lem will often arise, namely, how to refine a given compati­
bility. Here however, there is no canonical solution. 

There is one case where a solution can be found, namely 
when the compatibility is given in terms of an involutive 
covering of Vand there is an explicit finer covering. Typical­
ly, a partial inner product is introduced, which has a bigger 
"natural" domain. However, even in that case, uniqueness is 
not guaranteed. Once again, Bargmann's space gives a coun­
terexample. Ifwe start with the compatibility # 3 defined by 
the involutive covering .7 P ,P ElR I ' and introduce, as in 
Example 5.1, the usual inner product 

(/Ig) = f I(z) g(z)e- 1zl '/2 dz. 

The latter is obviously defined whenever the integral con­
verges absolutely: This leads to the compatibility # I ,finer 
than # 3 • Now if 1# 3g , then the inner product is also 
given by the expression 

(/Ig) = In!a"b". 
n-l 

which is defined whenever the series converges absolutely, 
leading to #2:> # 3 • However, we have seen that # I and 
# 2 are not comparable although they are both finer than 

#3 . 
Apart from that situation, very little can be said about 

the problem of refinement. As a first step, one might try to 
increase the number of compatible pairs. Equivalently, one 
can try to extend the domain of the linear forms 
cP f - (I I,) , initially defined on { I I # , and continuous in 
the Mackey topology 1'( { I I # , ( I I # #) . This however re­
quires topological considerations. For instance, if { I I # is 
not Mackey complete, one can extend cP f continuously to its 
completion. Or if cP f is continuous for a weaker topology 
1'( Vr ,Vi') , with { f I # ~ Vr ,CP f can be extended to all of 
Vr . Also cP f might be not continuous, but closable for such 
a weaker topology; then one can replace it by its closure 
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q:; f . However, explicit examples show that all these proce­
dures will yield compatibilities that are not comparable with 
the original one, because the involution will be modified. We 
must conclude that the problem of refinement has in general 
no solution. 

Yet there are cases in which partial results can be ob­
tained, namely one can enlarge the set of explicit assaying 
subsets. For instance, suppose the compatibility on V is giv­
en in terms of an involutive family .f = ! Vr J of subspaces, 
which is not stable under intersection (thus not a chain). 
Assume in addition that every Vr ,with its Mackey topology 
1"( Vr ,V, ) , is a reflexive Banach space (in particular, a Hil­
bert space). Then it can be shown6 that every element of the 
lattice generated by .f is again a reflexive Banach space, and 
is given explicitly as follows: 

Vpl\q = VpnVq , 

with norm 1I/IIpl\q = 11/11 p + 1I/IIq , 

VpVq = Vp + Vq , 

with norm 1I/IIpvq = inf (1lgllp + IIh Ilq)· 
f~g+h 

Here the infimum is taken over all decompositions 
1= g + h, withg E Vp ,h E Vq . In this way, one obtains an 
explicit enlargement of.f although not a finer compatibility 
as defined above. Another example is the explicit completion 
of a reflexive chain that was discussed at the end of Sec. 3. 

Notice that, in both cases, essential use is made of to po­
logical properties of assaying subsets. These are determined 
entirely by the partial inner product, which defines the dual­
ity between pairs Vr ,V, ; the compatibility alone no longer 
suffices. So the next step in our analysis is to study systemati­
cally the topological structure of PIP-spaces: This will be 
done in the next paper of the series. 6 
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APPENDIX A. GALOIS CONNECTIONS 

Let JI be a partially ordered set. A closure on JI is a 
map X ---... X from JI to JI such that: (i) X k X; (ii) X = X; 
(iii) X k Yimplies X k f.23 An element X E JI is said to be 
closed iff X = X. Let CtJ (JI) be the set of all closed elements 
of JI, with the induced order. Then if JI is a complete lat­
tice, so is CtJ (JI) with respect to the lattice operations 
(A' k CtJ(JI»: 

I\X/ = I\X/ ' 
XE 1 'f, (, f,') XE 1 ,/( 

VXI =(vxl) 
XE. I '~'(, f,') XE. 1 f,' 

(AI) 

Let now ::t' and JI be two partially ordered sets. A 
Galois connection23

,24 between ::t' and JI is a pair of maps 
a:::t' ---... JI (we write a(X) == XU) and/3:JI ---...::t', such 
that: 
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(i) both a and /3 reverse order, 
(ii) S k S U f3 for each SE::t' and T k T f3u for each 

TEJI. 
It follows from the definition that S ---... S" f3 (resp. T -+ T f3U

) 

is a closure on ::t' (resp. JI). 
From now on, we will assume that both ::t' and JI are 

complete lattices. So are then the two sets of closed elements 
CtJ (::t') and CtJ (JI). Furthermore, a (resp./3) is a lattice anti­
isomorphism of CtJ (::t') onto CtJ (JI) [resp. CtJ (JI) onto 
CtJ (::t')]; for every subset ff k CtJ (::t') one has 

( V X)" = 1\ XU, 
XE i x£ I' 

(A2a) 

( )

u 

1\ X = V X", 
XE 1" XE.I' 

(A2b) 

and similarly for (1. Actually25 in the case where both ::t' and 
JI are complete lattices, the two maps a and /3 are not inde­
pendent: a generates a Galois connection iff it satisfies the 
single condition (A2a); /3 is then uniquely determined and 
given by: 

Tf3= V X. 

Further insight into the structure of Galois connections 
can be found in a paper by Shmuely.26 Two points are of 
interest for us: 

(1) Galois correspondences between the complete lat­
tices ::t' and JI are in 1-1 correspondence with certain sub­
sets of ::t' X JI, called G-ideals. Since these, with the natural 
order inherited ::t' XJI, form a complete lattice, it follows 
that the set of all Galois maps a:::t' ---... JI that generate a 
Galois connection also form a complete lattice. 

(2) Every Galois connection between ::t' and ,.4/ can be 
generated by a binary relation, that is a subset r k ::t' X JI; 
for instance r = ! (S,T)I T<suJ . Conversely, every binary 
relation r k ::t' X JI generates a Galois connection, name­
ly the one that corresponds to the minimal G-ideal generated 
(by lattice operations) by r,(O f ,1 f,') and (1 f ,0 f,' ) where 
0, resp. 1, denotes the smallest, resp. largest, element of the 
lattice indicated. 

Next we specialize the discussion to the case 
2" = JI = 9 (S), the complete lattice of all subsets of a giv­
en set S. Ifwe assume furthermore that a = /3 (such an a is 
called an involution 24

), the resulting self-dual Galois connec­
tion on 9 (S) is exactly what was called compatibility on Sin 
I. Indeed a = /3 is equivalent to the corresponding binary 
relation rbeing symmetric: (X,y) E r iff (y,x) E r, which 
we can write, as usual,X # Y(with # - a = /3). ThecIosed 
elements of 9(S) are precisely the assaying subsets, which 
constitute the complete lattice ,(;T(S,#). The map # of 
,(;T(S, #) onto itselfis an involution and a lattice anti-isomor­
phism. Property (1) above means that the set Comp(S) of all 
compatibilities on S is in a 1-1 correspondence with the set of 
all symmetric G-ideals of 9 (S) X 9 (S) and the latter is a 
complete lattice with respect to the order inherited from 
9 (S) X 9 (S). That order is exactly the notion of the weak 
comparability ("weakly finer", etc.) introduced in Sec. 5. 
Property (2) yields the notion of generating subset for a Ga­
lois connection: These are our rich subsets, discussed in Sec. 
4. 
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Finally, we come back to the linear case. Let Vbe a 
vector space and :# a linear compatibility on V. By the very 
definition, the relation I #g (f,g E V) is equivalent to 
[f]#[g], where [f] is the one-dimensional subspace gener­
ated by I Thus we may take as complete lattice !,t' (V), the set 
of all vector subspaces of V: A linear compatibility on Vis the 
same thing as a self-dual (or involutive) Galois map on 
!,t'(V). The whole discussion above then goes through. 

APPENDIX B. NONLINEAR COMPATIBILITY 
RELATIONS 

As stated in I and in Appendix A, compatibility rela­
tions may be defined naturally on arbitrary sets; they are just 
symmetric binary relations. In this Appendix we will exhibit 
some interesting examples of such general compatibilities, 
which illustrate some points of the paper. 

Let S be an arbitrary set, and :# a symmetric binary 
relation on S. The latter extends to an involutive Galois con­
nection on 9(S): 

· if T = 0, the empty set, we put T# = S, 

· ifT= (/l. T# = (g ES Ig:#f) , 

· if Tis arbitrary, T# = (g E S Ig#/V IE T J 

= n (/J#. 
fE T 

Thus the set ff (S,:#) of all assaying subsets 
(T = T # #) , ordered by inclusion, is a complete lattice with 
respect to the operations 1\ = set intersection and 
V = # #-closure of set union, and :# is an anti-isomor­
phism of Y{S,#). 

Example B.l.: Equivalence relation. In general, # need 
not be reflexive, nor transitive. If it is, i.e., an equivalence 
relation, then the above construction gives the following: If 
T s S is entirely contained in one equivalence class, then 
T # = T # # = equivalence class containing T. If T contains 
at least two nonequivalent elements, then T # = 0 and 
T## = S. So, if S contains at least two inequivalent ele­
ments, the assaying subsets of S are 0, S, and single equiv­
alence classes. We see in particular that the union of two 
assaying subsets need not be one (i.e., the sup is not set 
union). 

Example B.2: Polarity. Let S be Rn with the Euclidean 
inner product; writes :# 11 iff 1(5,11)1 « 1. Then for any subset 
T s S, T # is the absolute polar of T, and the assaying sub­
sets are precisely all closed, absolutely convex subsets of 
R" .10 

Example B.2a. As a variant ofB.2, define a family of 
compatibilities for every p> ° as follows: S # p 11 iff 
1 (5,71) I « p. Then for p < q, # q has more compatible pairs 
than # p and A # p ~A #q for every A S Rn . On the other 
hand, the assaying subsets are the same for every p > 0, 
namely all closed, absolutely convex subsets of Rn 

; hence 
5·(# p) = Y(#q) as sets and A # r# p = A #q#q, the closed, 
absolutely convex cover of A. In other words, # p is weakly 
coarser, but not coarser than (indeed, not comparable to) 
#q if p<q. 

Example B.3: Vicinity. Let S be an abelian topological 
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group and N s S a balanced neighborhood ofthe identity, 
i.e., - N = N. Define I:#g iff 1- g E N. Take for instance 
S = Rn ,N the open unit sphere. Then any open sphere S R of 
radius R « 1 with arbitrary center, as well as any closed 
sphere 8R of radius R < 1, is assaying, and we have (S R)# 
= 81 ~ R' (8R)# = SI ~ R . More generally, if Tis an arbi­

trary subset of diameter d;;. 2, then T # = 0 . Otherwise T # 

is a small connected set, T # = n fE TSI [/1 , where SI [/1 
is the open unit sphere centered atl 

Example B.3a. In the same setup, take instead N, the 
closed unit sphere. Then only spheres 8R (R « 1) are assaying 
and (8R )# = 81 ~ R • 

Example B.3b. On the other hand, if N is taken to be a 
subgroup (e.g., Rk ,k < n) weretum to a equivalence relation 
as discussed in Example B.l above. 
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An improved asymptotic Pade method is presented. The approximations expressed as rational 
functions are developed both in a power series and asymptotic expansions. Identifying these 
developments with those for the exact function, the approximated rational functions are 
obtained. Three- and four-pole approximations for the plasma dispersion function have been 
determined with this method. Our approximations (Zlm) give closer results to the exact function 
than all the published ones. 

I. INTRODUCTION 

In a previous work l a two-pole approximation for the 
plasma dispersion function Z (defined as a Hilbert transform 
of the Gaussian2.J) has been obtained. In that work we have 
modified the Pade method, in order to include, besides the 
power series, one term of the asymptotic expansion. In this 
paper we generalize the method in order to include several 
terms of the asymptotic expansion besides the power series. 
There are of course several possibilities of approximation 
depending on how many terms of the power series and as­
ymptotic expansion are taken into account. 

The method here is used to approximate the function Z, 
but the procedure is quite general and it can be used in other 
problems to improve the Pade method' in the cases where 
the asymptotic expansions are known. 

Though the Martin and Gonzalez two-pole approxima­
tion I for the Z function is better than that of Fried et al.,3 
however for s;;;,2, the accuracy in the imaginary part of Z (s) 
and Z '(s) is not good. Since the imaginary part of Z '(s) be­
comes important to compute the damping or growth of pi as­
rna waves, it appears very convenient to have better approxi­
mations to the Z function that are still easy to calculate. For 
this reason we have applied the general procedure to three­
and four-pole approximations. As in the two-pole case, a 
straightforward Pade method gives only good results for 
very small values of the arguments. The reason is that in the 
usual Pade approximation only the power series is used. 

Our best results are obtained by using five terms of the 
power series and three terms of the asymptotic expansion. 
This gives excellent agreement for all values of s in the upper 
half-plane. We think that this approximation can now be 
used for most of the computations of Z (s) and Z '(s). Three 
poles can also be used with a little less accuracy. Similarly to 
the two-pole case, I the multipole approximations still pre­
serve the symmetry property of Z (s) and all the parameters 
are defined in an exact way, avoiding the need of visual in­
spection of computed displays as in Ref. 3. 

The material is arranged in the following way. The gen­
eral procedure for obtaining the poles of the approximation 

is described in Sec. II. The results are presented in a graphi­
cal form in Sec. III. An analysis and discussion of the various 
approximations are also carried out. The last section is de­
voted to the conclusions. 

II. GENERAL PROCEDURE 

We look for rational functions to approximate a given 
function. The approximations are obtained by identifying 
the terms of the power series and asymptotic expansion of 
the exact and approximated functions. Considering the plas­
ma dispersion function Z (s), the rational function is written 
in the form 

(1) 

Here the polynomial numerator is chosen one degree 
less than the polynomial denominator in order to get the 
required asymptotic behavior to 0 (l/s). Once the param­
eters of the approximation are found an expansion in partial 
fractions 

(2) 

is performed, showing explicitly that this function is an n­
pole approximation. 

To obtain the values PO,PI ,···,Pn _ I and ql ,q2 , .. ·,qn' the 
power series and asymptotic expansion for Zap (s) is written 
as 

Zap = Po + (PI - Poql)s 

+ (P2 - POq2 - PI ql + Poqi}s2 + ... , (3) 

Z = Pn --I ~ + Pn -I (Pn-2 _ qn -I » 
up 2 

qn S q" p" _I qn S 

Pn-I (P"--3 qn-2 +-------
q" Pn -I qn 

Pn 2 qn--I q~-I» - +--2- 3 + .... 
p" I q" qn S 

(4) 

Now the coefficients of the first I-terms of series (3) are 
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TABLE I. P; parameters of the polynomial numerator and qj parameters of 

the polynomial denominator of Z'm (s). 

n=2 

Po ={V-; 
.V.". 

q, = -1--
.".-2 

Z" 
4-.". 4-.". 

P,=--
.".-2 

q2 = ---
.". -2 

Pu = ,V-; q, = -IV-; 
Zll 

P, = 1T-2 92 = - (.".-2) 

Po =IV-; q, = -IV-; 
ZI3 

P, =2 92 == -2 

n=3 

Po ={V-; _ -3.".+10 {V-; 
q, - 2(5.".-16) 

Z" 
3.".' -3<hr+64 21.". -64 

P, = 
2(51T -16) q2 = 6(51T-16) 

91T -28 {V-; 91T -28 ,V-; 
p,= 6(51T-16) 9, = - 6(51T -16) 

Po =IV-; 3.". -8 
i q, =-

3V-;(.". -3) 

Z4' 
10 -31T 10 -3.". 

P, = 3(1T -3) 9, = - 3(1T -3) 

16 -5.". (16 -5.".); 
p, =-

3V 1T (1T -3) 
q, = 

3\/ 1T (.". -3) 

Po =IV-; I -
9, = ---IV.". 

4-.". 

Z,-, 
3.". -8 31T -8 

P,=-- q, = ---
4-1T 4 -.". 
-2(1T-3) rv'- 2(.".-3) rv'-

p, = I 1T 93 = I 1T 
4-.". 4-1T 

n=4 

Po =iV-; 
9.".-28 rv' 

q, = - 2(6.".' -29.". +32) I 1T 
-36.".' + 195.". - 256 

q, = - 6(6.".' -29.". +32) 
-15.".' +881T -128 

p, = 
2(6.".' -291T +32) 

Z5' 
= _ -331T + 104 ,V-; 

p, 6(6.".' -291T +32) 
_ -331T+I04 ,V-; 

q, - 6(6.".' -291T +32) 
9.".' -69.". + 128 

p, = - 3(6.".' -291T +32) 
9.".' -69.". + 128 

94 = 3(6.".' -29.". +32) 

identified with the first I-terms of the exact power series of 
Z(s): 

Z(s) = iV-;; - 2s - iV-;;S2 + ¥3 
,V-;; 4 5 +---5 -Iss + .... 

2 
(5) 

Similarly the coefficients of the first m-terms of expan­
sion (4) are identified with the first m-terms of the asymptot­
ic expansion for Z (s): 

.... j- _,' 1 1 3 15 
Z(S)=lV 1Tae --------- .... (6) 

s 2s3 4s5 8s7 
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Here the exponential terms i(1T) 1/2 a exp( - S2) is of 
higher order for real s (a = 1), and zero in the upper half­
plane (a = 0). Therefore it is not considered here. 

In the lower half-plane (q = 2) this term becomes im­
portant. However, the multipole approximations cannot be 
used directly, all the poles being in the lower half-plane. In 
this case, Z (s) is obtained computing Z • for s· and then 
adding 2i(1T) 1/2 exp( - S2) as in Ref. 3. 

In an n-pole approximation we have 2n unknowns and 
we need 2n equations. Therefore it will be necessary that 

2n =l+m. (7) 

The approximation Zap(s) for a given I and m will be 
denoted by Zim (s). It is clear that there are several possibili­
ties in order to verify Eq. (7) for the same n. 

For a given n, if a good approximation is needed for 
small values of s, I should be large. For large values of s, I 
should be small. To obtain a good approximation for all val­
ues of s, I and m should be of about the same value. The 
analysis in the next section for the two- and three-pole cases 
shows that I slightly larger than m give the best results. 

The set of equations for the p's and q's are nonlinear but 
in all cases we have examined all the p's and q's give unique 
values. 

TABLE II. ak poles and bk pole-residues of Z'm (s). 

n=2 

n=3 

a, = -0.5138 -1.0324i 

a2 = 0.5138 -1.0324i 

a, = -0.5228 -0.7763i 

a2 = 0.5228 -0.7763i 

a, = -0.5510 -0.4431; 

a, = 0.5510 -0.443 Ii 

Q, = -0.8957 -1.3245; 
Z5I a2 = -1.4096i 

Q3 = 0.8957 -1.3245i 

a, = -0.9050-\.1317i 
Z42 Q2 = -1.2278; 

Q 3 = 0.9050 -1.1317; 

Q, = -0.9217 -0.9091; 
Z" a2 = - 1.0204i 

n=4 

Q, = 0.9217 -0.9091; 

Q, = -1.2359 -1.2 I 50i 
Q 2 = -0.3786 -1.3509i 

Z53 Q, = 0.3786 -1.3509i 
Q4 = 1.2359 -1.2150; 

b , = -0.5 +1.2891; 

b2 = -0.5 - 1.2891i 

b, = -0.5 +0.7425; 

b, = -0.5 -0.7425i 

b, = -0.5 +0.4021; 

b, = -0.5 -0.4021; 

b, = 1.2401 +0.8399; 
b2 = -3.4802 
b, = 1.2401 -0.8399; 

b, = 0.5809 +0.74OOi 
b2 = -2.1618 
b, = 0.5809 -0.74OOi 

b, = 0.1822 +0.5756; 
b2 = - 1.3643 
b3 = 0.1822 -0.5756i 

b, = 0.5468 -0.0372i 
b2 = -1.0468 +2.1018i 
b, = -1.0468 -2.1018i 
b4 = 0.5468 +0.0372i 
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FIG. 1. Map in the complex (LlZ'm = Z'm - Z) .£lane of the real saxis, 
O';;s.;;4 under s ..... LlZ'm (s). (a) Curves for LlZIJ , LIZ, LIZ", LIZ", LIZ)], LIZ", 
LIZ", and LIZ". (b) Curves for LIZ. LlZ,1, LIZ", LlZ,Jo and IOXLlZ5j. 

Following the general procedure previously described 
we get the rational approximations whose coefficients are 
given in Tables I and II. 

In the two-pole case, the first functionZ31 (s) is the same 
discussed in a previous paper under the notation Z (s). 1 

We point out that the symmetry property 

Zlm(s) = - [Zlm( - s*)]* (8) 

is automatically verified by all the approximations here con­
sidered. This is because all the Pi'S for i even, and all the 
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qj'S for j odd, result in pure imaginary and the others real. 
Equivalently all the poles a k appear to be symmetric with 
respect to the imaginary axis and the coefficients bk are sym­
metric with respect to the real axis. 

III. ANALYSIS AND DISCUSSION 

The map of the real axis for O<;s<;4 under [Zlm (s) 
- Z (s) 1 is shown in Fig. I. First of all, it is clear from Fig. 
I(a) that increasing the number of poles results in a better 
approximation. For two poles, the best approximation is 
Z31 (s) as it w~ previously shown.! However, the Fried et al. 
calculations Z (s) give better results than Z13 and Z22' For 
three poles, Z42 gives similar results to Z51 and better results 
than ZJ3' However, IrnZ42 fits to IrnZ better than IrnZ51 (see 
Fig. 2). The locus Z;1 - Z' is closer to the origin than the 
locus of Z;2 (see Fig. 5), but ImZ;2 fits better than ImZ;1 
(see Fig. 6). Since small discrepancies in the imaginary part 
of Z' can become important in the calculation of the damp­
ing of the waves, we have considered Z~2 as a better approxi­
mation than Z51' 

In Fig. I(b) we have replotted the best approximation 
for a given number of poles. The locus IO(Z'3 - Z) is also 
drawn, and still lies inside the locus Z3! - Z. 

For all Zim (s) the agreement becomes better as s moves 
away from the real axis in the upper half-plane. This results 
from the fact that all the poles of Zim are in the lower half­
plane, as was the case for the two-pole approximations pre­
viously calculated. 1,3 

For this reason all the graphs that follow will be done 
for real values of s in the range O<;s<;4. 
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FIG. 7. Reai parts of.dZ Im(s)for.dZ',.dZ ~2' and.dZ ;,. Real partofZ '/10 
is also plotted for reference. 

" Figure 2 shows IImZ I for Z (Ref. 3), Z (exact value), 
ZJ}, Z'2' Z5], and ZSl in a logarithmic scale. Figures 3 and 4 
show the real and imaginary parts of the Z'm - Z for each 
number of poles. Figures 5-8 are the corresponding plots for 
Z'. 

The agreement in the real part of Z'm is quite good, and 
for ZS3 the relative error becomes less than 0.5%. For ImZ'm 
the agreement is good for small s (0 < s :S 2.5) and it is not so 
good for large s, mainly because ImZ goes to zero very fast. 
In all approximations ImZ'm goes through zero, reaches a 
small minimum, and goes asymptotically to zero (Figs. 2 and 
4). ImZ never becomes negative in the range where Z'm is 
negative; but it is very small, and for ImZs3 the absolute error 
here is less than 0.001 (Fig. 2). 

The derivative functions Zim do not fit as well as the Zim 
functions. This is reflected in the change of scale for Fig. 5 
with respect to Fig. 1. The relative error of the real part of 
ZS3 is less than 2%, compared with 0.5% for ReZS3 (Fig. 7). 
For the imaginary part of Z ' the agreement is not so good as 
for Z (Fig. 8), though for large s, the maximum absolute 
error is about the same (0.001) (Fig. 6). 

284 J. Math. Phys., Vol. 21, No.2, February 1980 

----~-~~-- '.-:::;:::;'" 
,'----.- ~ \ /. 
\\, ...... / 

. / '-.-. 

1---- ImZ'/10 
-.10 

-.15 

-.20 

-.25L--..---'-~---L---'------"L-----'-_---'-----..J 

o 0.5 1..0 L5 2..0 25 3.0 35 4.0 
S 

FIG. 8. Imaginary parts of ..:1Zlm (s) for .dZ',..:1Z 31' ..:1Z ~2' and .dZ;" and 
.dZ ;3' Imaginary Part of Z '/ IO is also plotted for reference. 

IV. CONCLUSION 

The usual Pade method has been improved by consider­
ing the asymptotic expansion together with the power series 
in order to obtain better approximations to a given function. 
Using this method we have obtained multipole approxima­
tions for the plasma dispersion function. 

In this way we get good approximation to Z (s) not only 
for small values of s, but also for large values of s. 

The approximations agree well for real values of s and in 
the upper half-plane. All the poles of these approximations 
are in the lower half-plane. The symmetry condition is also 
automatically verified. Better agreement is obtained in gen­
eral when more poles are considered. A good balance be­
tween the power and asymptotic series is obtained by using 
two more terms of the power series than the asymptotic ex­
pansion. In this way we obtain the best fit for the whole range 
of s. Ifwe want a better agreement for a small (large) value of 
s, more (less) terms of the power series must be used. Our 
four-pole approximation here denoted by ZS3 (s) gives a rela­
tive error for ReZ and ReZ ' less than O. 5 and 2 %, respective-
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ly. The imaginary parts do not agree so well, mainly for 
s ~ 2.5. Nevertheless the absolute errors for IrnZ and IrnZ I 
are less than 0.001 in this region. 

Approximations with three poles are also obtained 
which fit better than all the published ones, but with less 
accuracy than ZSJ' 
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Dynamical realization is given to the generator responsible for breaking the usual SU(3) 
invariance symmetry in the case of the Lewis-Riesenfeld time-dependent oscillator: H(t) = 
1/2 ~~ [PiPi + W 2(t)qiqJ This is achieved by finding a simple expression for the time-dependent 
Hamiltonian in th~ interaction picture: H = Ho + gHI. The breaking interaction is shown to 
transform as (6 Gl6) of SU(3). Time-dependent dilations relate the broken Hamiltonian to the 
Lewis-Riesenfeld form. This scaling generates the algebra of the Weyl group and its role in 
oscillator noninvariance symmetries is considered. 

1. INTRODUCTION 

Renewed interest in the role of noninvariance symme­
tries for the harmonic oscillator has been independently gen­
erated in a number of recent articles. 1-4 Such groups permit 
a complete characteriztion of the dynamics in terms of the 
associated group representations. The noninvariance sym­
metry includes the usual invariance symmetry of the oscilla­
tor Hamiltonian as a subgroup in such a way that the sym­
metric tensor representations of the larger group contain the 
corresponding oscillator energy levels 5-7 (finite- and infi­
nite-dimensional). The larger group is not a true symmetry 
of the total Hamiltonian in the sense that the extra gener­
ators do not commute with the Hamiltonian. 

In particular our investigations of the symmetries of the 
Lewis-Riesenfeld time-dependent oscillator 8,9 have shown 
that the usual SU(3) dynamical symmetry, associated with 
the time-independent oscillator in three dimensions, consti­
tutes a noninvariance symmetry of the Lewis-Riesenfeld 
system, while the true invariance symmetry is SO(3). The 
introduction of an arbitrary time-dependent frequency w(t ) 
into the oscillator Hamiltonian has the effect of reducing the 
invariance symmetry in a very particular way, and it is our 
purpose in this paper to give a dynamical description of this 
symmetry breaking. 

The form of the operators which are responsible for 
breaking the SU(3) invariance are perhaps not immediately 
obvious because of the "sourceless" form of the 3HLR -Ha­
miltonian, i.e., the arbitary function of time w(t) represents 
the result of some time-dependent dynamical effects, e.g., 
contact with a thermal reservoir or electromagnetic interac­
tions. This Hamiltonian is suggestive of so-called "open sys­
tems." 10 However, as we shall show, the symmetry of the 
breaking generator is independent of the arbitrary function 
of time. This is to be expected since the symmetry algebra is 
constructed only from canonically conjugate variables. 

Symmetry breaking effects are most conveniently ex­
pressed in the interaction picture with the total Hamiltonian 

")Part of this work was delivered at the Seventh Integrative Conference on 
Group Theory and Mathematical Physics, The University of Texas at 
Austin, 1978. 

written in the partitioned form H = Ho + gHI , where g is 
an arbitrary constant and in general H, Ho, and HI do not 
commute with each other. If Ho is exactly invariant under a 
dynamical (degeneracy) group Go, which has a subgroup go, 
and H is invariant under go' then HI is also invariant under 
go while the noninvariance group G-::J Go has some ofits gen­
erators not commuting with H. For the 3H LR(t )-Hamilton­
ian we have go -SO(3) and G-SU(3). 

In this paper we write a simple expression for the inter­
action Hamiltonian on the basis of the arbitrary nature of the 
time dependence which relates the 3HLR (t )-Hamiltonian to 
the usual time-independent 3H-oscillator generators and 
discuss the significance of dilations and scaling transforma­
tions. First we recall how the noninvariance symmetry is 
generated. 

2. NONINVARIANCE ALGEBRA 

The Lewis-Riesenfeld Hamiltonian 
3 

H (t) = ! I [Pi Pi + w2(t )qiqi ] (1) 

is clearly not a constant of the motion, but we have estab­
lished the existence of a symmetric tensor invariant 

Aij(q,p,p,p) = ! fp -2 qiqj + (pp - pq)i(PP - pq)j]' (2) 

where p(t) satisfies the constraint equation (A = const) II 

p3(t )[,o(t) + w2(t )p(t)] = A 2. (3) 

This invariant is a constant of the motion even though it does 
not commute with H (t ); 

. aA .. 
[Aij(q,p,p,p),H(t)] = -I} ~o at 
The anti symmetric 3-tensor 

(4) 

Jk = iEijkqiPj' i,j,k = 1,2,3 (5) 

together with the traceless symmetric 5-tensor 

D 3 

Bij = Aij - ; .fAkk (6) 

span the regular 8-representation of the SU(3) algebra 

[Mil ,M,,] = 2iCIl"KMk' I1,V,K = 1,2, ... ,8, (7) 
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where 

J I =M7, J2 = -M5' J 3 =M2, 

B12 = Mp B23 = M6, B13 = M4 , 

(l/v3)(Bll + B22 - 2B33) = M s, 

B II - B22 = M 3• 

3. INTERACTION HAMILTONIAN 

Following the discussion of Sec. 1, we devise a way of 
expressing the Lewis-Riesenfeld Hamiltonian in the desired 
interaction form. In doing so, the following criteria must be 
satisfied: 

(i) The total Hamiltonian H must be equivalent to the 
Lewis-Riesenfeld Hamiltonian described in Sec. 2. 

(ii) Ho is the usual time-independent oscillator Hamil­
tonian (in three dimensions) which is exactly SU(3) 
invariant. 

(iii) The time dependence of the righ-hand side is rel­
egated to the interaction term HI in such a way that ifitis no 
longer explicitly time-dependent, then H becomes equiv­
alent to the time-independent Hamiltonian. 

(iv) HI must be exactly invariant under SO(3) transfor­
mations. By writing the total Hamiltonian so as to fulfil these 
conditions, the nature of the symmetry breaking can be dis­
cussed along conventional lines. 

The approach taken here is somewhat different from 
previous discussions of broken symmetries in quantum me­
chanical systems. 12.13 Usually the form of HI is given in 
terms of the appropriate dynamical variables on the basis of 
mathematical or physical assumptions. In this way the sym­
metry properties of the total Hamiltonian are determined, 
e.g., if HI = g/q2, then the simplest noninvariance group is 
SO(3)XSO(2,1). 

The problem being considered here amounts to a rever­
sal of this situation since we already know the form of the 
total Hamiltonian H and its symmetries. 14 Accordingly 
there is the question of uniqueness of choice regarding the 
form HI . However, we avoid this problem by noting that 
since w(t) in Eq. (1) is an arbitary function, we may simply 
write w2(t ) = w6 + n 2(t ) to give an interaction expression 
for the Lewis-Riesenfeld Hamiltonian 

H (t) = !(p; + w6qf) + !n 2(t )q;, 

which fulfills each of the above requirements. 

4. CANONICAL TRANSFORMATIONS 

A. Classical transformations 

(8) 

A similar breakup of the Lewis-Riesenfeld Hamilton­
ian can be achieved through the use of appropriate canonical 
transformations. I These results will be important for the 
discussion in Sec. 5. 

287 

The canonical transformations 

lp,q l :space 

p =p-Ip +pq 

q =pij 

lp,ijl :space 

p=pp-pq 

ij=p-Iq 
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are generated by the function 

F(p,ij,p,p) = - ppij + !fJpij2 

and the 3H (t )-Hamiltonian H (q,p,t) becomes 

H(q,p,t) =p- 2H o(ij,j) _ aF. 
at 

(9) 

(10) 

With this observation we are able to write the desired 
interaction term as 

(11) 

B. Quantum transformations 

The corresponding canonical transformations in quan­
tum mechanics connecting the representation lp,q l to lp,ijl 
are given by 

p= UpU -1, ij= UqU-1, 

where U is a unitary operator, thus ensuring the existence of 
the canonical commutation relations 

[q;,qj] = 0, [P;,pJ = 0, [q;'Pj] = iDij 

in each representation. The form of these transformations is 
related then to the classical generating function by a theorem 
due to Dirac. 15 

If !q) and !v are eigenstates of the respective represen­
tations, then the transformation function between these ei­
genstates is defined through F (ij,q) treated as an operator in 
the mixed representation 

<ij!q) = exp[iF(ij,q)]. 

For a given representation !r) we have the operator 
equations 

<-I;>!) aF(ij,q) <-I ) qlt' r = aq q q , 

<ij!p!r) = _ aF~:,q) <ij!q), 

corresponding to the usual classical equations. 

(12) 

(13) 

The generator defined in Sec. 3A is written in the co­
ordinate-momentum representation. Using the identity 

I<ij!q) <q!p) = <ijiP), (14) 
q 

we have, e.g., 

<ij!piP) = <q!p) aF~;,p) (ij!q) = aF~~!p) (15) 

for which the corresponding transformation function is 

<ij!p) = exp[iF(ij,p)]. (16) 

The most general canonical transformations are gener­
ated by the classical action S dtL (ij,q,t ) where the 3H LR (t )­
Lagrangian is 

L 1 2-'-2 '--'- 1( -2 ")-2 
LR = 2P q - ppq.q - 2: P - pp q , 

and the Hamiltonian is 

(17) 

H LR = ! [( p- Ip + pij)2 + (p - 2 _ pp)ij2] . (18) 

The generating function F (ij,p) represents an action related 
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to the simpler Lagrangian 

L = -lppq.ij + ~(p2 + pp)lf. (19) 

The associated Hamiltonian is a special case of the above, 
viz. 

(20) 

4. BREAKING GENERATOR 

The canonical variables in the interaction Hamiltonian 
evidently do not form a realization of SU(3) infinitesimal 
generators so that it is not possible to express the total Ha­
miltonian in terms of the quadratic Casimir invariant 16,17 

c 1a,f3] = !(a2 + a{3 + {3 2 +3a +3{3). (21) 

We can, however, determine how HI transforms under 
SU(3) generators. The canonical bilinear matrices 

(QiQ),(P;.P),(QiPj + PiQ) 

span the algebra ofSp(6,JR) 2,18 and HI can be associated 
with the trace, I.iQiQi' Using the branching rule method 
described in Ref. 2, we can find its representation in SU(3). 
Recalling 2 that 

SP(6)!SU(3): 21:J8 Ell 6 Ell 6 Ell 1, (22) 

we see that HI must lie in a 6 and 6. The bilinear 
!I.i(qk qk - PkPk) transforms exactly asa6 according to the 
commutation relations among SU(3) generators (See Sec. 2): 

Ll: [Ji,(qkqk - Pk Pk)] = 0, 
k 

{ {j} 
= - i (qi Pj + Pi q) - ; (q.p + p.q) , (23) 

! I [Bij , [Bij,(qkqk - Pk Pk)]] = ~ I(q2 - p2). 
ij k 

In this normalization c12
,0] = ~ corresponds to 6. 16 

5. DILATIONS AND THE WEYL GROUP 

A. Time-dependent dilations 

The transformations used in Sec. 3 are of three related 
types. 

Type (I): (p,q I +-+ Lo,ij) : 

p =p-lji +pij, d ji=pp -pq, 
_ an _ _ I 

q=pq q=p q 

Type (II): (p,ql+-+(P,Q I 
p = P + (pip), d P = P - (pip) an . 
q=Q Q=q' 

Type (III): (ji,ijl +-+( P,Q I 

d 
p=p-lji, 

an 
Q=pq 

Type (I) transformations were used previously to establish 
the connections 
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TrAi/q,p) 

I 
H(q,p,t) 

Type (III) transformations are simply time-dependent dila­
tions defined 19,20 by 

U - l(a)PU(a) = eap, 

U - l(a)QU (a) = e - aQ, 
(24) 

where 

U(a) = exp[ - ia(t)]D. (25) 

and a = logp. 
The generator D = I.tqplJqi spans the algebra of the 

Weyl group WG (3): 

(26) 

Applying the scaling transformations of Type (III) to 
the Hamiltonian, 

Ho(ij,ji) = !(ft2 + UJ'til), (27) 

furnishes the interaction form in (P,Q ) -space 

Ho(ij,ji) = ! [P 2 + UJ2(t )Q 2 + (;il p)Q 2], (28) 

where Eq. (3) has been written 

A. 2 = UJ6 = p3 [p + UJ2(t )p ]. (29) 

B. Time-independent scale transformations 

Consider the case where n (t) = const; then the total 
Hamiltonian is just the time-independent oscillator. More­
over, if p = const = UJo , then 

(30) 

In this case the time-independent oscillator scales under di­
lations, although the generators of W G (3) do not commute 
with those of SU(3). It seems plausible that this may be the 
underlying feature which has led to the recent suggestion 
that the semi direct product group SU(3) 8 W G (3) may be a 
suitable noninvariance group for the 3H-oscillator. The irre­
ducible representations may be found using Mackey's theo­
rem. 21 The induced reps Uwof WC<n)tSU(n) which inter­
twine the projective representations A n of SU(n) are 
evaluated from the group action. The resulting irreps 

are, in general, the tensor reps. corresponding to the 
(a + l)th energy eigenvalue 2,6,7 as described in Sec. 1. 

6. CONCLUSION 

(31) 

In this paper we have resolved the outstanding problem 
of determining a dynamical realization for the interaction 
responsible for the absence of an SU(3) in variance symmetry 
in the Lewis-Riesenfeld oscillator. To arrive at this result 
requires the construction of an expression for the 3H LR (t )­
Hamiltonian in the interaction picture. This was achieved 
most simply by appealing to a previously defined canonical 
transformation. By using the branching rules for 
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Sp(6HSU(3), it was shown that the breaking generators 
transform as a (6 ~ 6) under SU(3). Time-dependent dilata­
tions were found to relate the broken Hamiltonian to that of 
3HLR (1). Finally, it was suggested that time-independent 
scaling transformations applied to the 3H-oscillator may 
provide a physical reason underlying the existence of the 
semidirect product group WG(3) 8 SU(3) as a noninvar­
iance symmetry of the time-independent oscillator. 
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The purpose of this work is to analyze the physical optics method as applied to electromagnetic 
scattering theory and to point out its physical and mathematical drawbacks. The main 
conclusions are (1) that the boundary values assumed by physical optics lead to electromagnetic 
fields that do not satisfy the finiteness of energy condition and, as a consequence, that integral 
representations of these fields cannot be obtained via the divergence theorem; (2) that the 
commonly accepted representations are not solutions of the physical optics problem because they 
fail to reproduce the assumed discontinuities of the fields on the scatterer. Despite the above 
conclusions, the present work should not be construed as an attempt to discredit the method but 
rather as an effort toward a better understanding of it. As it is well known, there have been a 
number of occasions in which physical optics has yielded quite satisfactory results. 

I. INTRODUCTION 

One of the most widely used methods for estimating the 
electromagnetic fields scattered off a three-dimensional, 
closed, perfectly conducting surface S is that of physical op­
tics. 1

.
2 Briefly, the physical argument involved in this meth­

od is the following: Ifat each point of the scatterer the princi­
pal radii of curvature are large compared to the wavelength 
of the incident radiation, then for all practical purposes, the 
incident wave "sees" at that point an infinite, perfectly con­
ducting plane tangent to the scattering surface at the point. 
For a point directly exposed to the incident rays (in the sense 
of geometric optics) the total field there can be reasonably 
approximated to be that for the infinite plane, while for a 
point not exposed to the incident rays it can be taken to be 
equal to zero. Once this assumption is made, the scattered 
fields off the surface are computed via integral representa­
tions which involve the assumed field distribution and which 
will be discussed below in detail. If, for simplicity, S is taken 
to be convex, then the dark region, SI' of the scatterer is 
separated from the illuminated region, S2' by a simple closed 
contour C. Denoting by ! Ei, Hi] the incident fields, by 
! E, H I the scattered ones, and by fi the exterior unit normal 
on S, then according to physical optics 

fiXE = - fiXEi
, fiXH = - fiXH', 

on the dark side, while 

fiXE = - fiXEi
, fiXH = fiXW 

(1) 

(2) 

on the illuminated side. Maxwell's equations together with 
(1) and (2) imply that 

fi·E = - fi·Ei
, fi·H = - fi·W on SI , (3) 

fi·E = fi.E i
, fi·H = - fi·H i on S2' (4) 

This approximation to the exact scattering problem, 
also referred to as the Kirchhoff-Kottler formulation, has 
been the subject of much discussion over the years. For this 

"This work was partly supported by the U.S. Air Force Office of Scientific 
Research Grant 74-2634. 

reason another paper on the subject demands some justifica­
tion. Bouwkamp3 in his 1954 report on diffraction theory 
notes, "Many authors have recently devoted their attention 
to the classical Kirchhoff-Kottler formulation of the Huy­
gens principle and its application to practical problems. 
Apart from the applications, essentially new knowledge has 
not been obtained. Old results were often re-formulated, re­
interpreted, re-derived, re-named, or just simplified (?)." Fif­
teen years later, during which physical optics was the subject 
of considerable discussion, 1,4,5 Bowman et al 2 remarked ..... 
recent years have seen a growing tendency to credit physical 
optics with an accuracy which is in no sense justifiable. It is 
therefore unfortunate that necessary and sufficient condi­
tions for the validity of the method cannot be stated and, 
indeed, several of the most fruitful applications have been in 
circumstances where prior justification would be difficult." 
Indeed, a careful search through the literature referenced in 
the above works reveals that very little work has been done in 
understanding the method itself, the physical implications of 
the assumptions on the field distribution on S, and the struc­
ture (and mathematical implications) of the integral repre­
sentations associated with it. The purpose of this paper is to 
address these questions and point out the physical and math­
ematical drawbacks of the method. 

Much of the the confusion surrounding physical optics 
stems not from the assumption on the field distribution on S 
but from the integral representations used for calculating the 
scattered fields. The present plan is to accept (1)-(4) as the 
fundamental assumptions of physical optics and then at­
tempt to derive integral representations. As it is well known, 
integral representations for electromagnetic scattered fields 
can be obtained in two ways: either by using the divergence 
theorem or by first postulating them in terms of surface den­
sity functions (as is commonly done in potential theory) and 
subsequently verifying their validity by checking whether 
they satisfy the requirements of the problem. Both ap­
proaches will be used here. Before doing so, however, a few 
notes on the accepted representations will be offered togeth­
er with a more detailed plan of the paper and its main 
conclusions. 
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The integral representations commonly associated with 
the physical optics method have their origin in the work of 
Kottler6

.
7 on the black screen problem. Their derivation as­

sumes that the fields off the surface are due to electric and 
magnetic charge and current densities on S as well as to 
electric and magnetic line charges on the closed contour C 
that separates the illuminated from the dark side of S. In this 
manner the fields are expressed in terms of surface integrals, 
known as the Stratton-Chu formulas,s and line integrals 
which bear the name of Kottler. 

These modified Stratton-Chu formulas have been used 
through the years in their original form or in a modified but 
equivalent one. 9 In 1967, Kottler 10 attempted to derive them 
for the black screen problem via the divergence theorem but 
it was subsequently shown II that the derivation was in error 
for the resulting fields failed to satisfy the specified condi­
tions at the edge of the black screen. In 1968, Sancer5 fol­
lowed similar lines for deriving the corresponding formulas 
for the physical optics case. As with Kottler lO his derivation 
violated one of the asumptions of the divergence theorem, 
namely, that the function involved in the theorem must be 
continuous in the closed region in which the theorem is 
applied. 

In the present work, the question of whether integral 
representations can be obtained through a legitimate use of 
the divergence theorem is addressed in Sec. II. Although the 
answer is in the negative, the process yields the interesting 
by-product that the fields resulting from the physical optics 
approximation do not satisfy the finiteness of energy condi­
tion; thus, once the surface fields are specified as in (1)-(4), 
then irrespective of the integral representations to be em­
ployed, the scattered fields will violate a physical condition 
that scattered fields in all situations are supposed to obey. In 
Sec. III, Hertz vector-potentials are employed for deriving 
representations (potential method). It is shown subsequently 
that the fields so obtained fail to reproduce the assumed dis­
continuities across C and, hence, are not solutions of the 
physical optics problem. The analysis employed also an­
swers in the negative the long standing question of whether 
the fields resulting from the physical optics approximation 
can be used as the first term in an iterative scheme that would 
~onverge to the exact solution ofthe scattering problem. Sec­
lton IV offers some concluding remarks, while detailed com­
putations are left to Appendices A, B, and C. 

s 

FIG. I. Cross section of S showing surfaces a and ~T' and curve C. 
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II. THE DIVERGENCE THEOREM AND THE ENERGY 
CONDITION 

The scattering surface under consideration is a three­
dimensional, closed and bounded surface S. Its mathemat­
ical properties will be described in greater detail in the next 
section but, for the present, it is sufficient to assume that it is 
smooth enough for the divergence theorem to be applica­
ble. 12

•
13 The incident electromagnetic wave is assumed to be 

such that the dark region, SI' is separated from the illuminat­
ed region, S2' by a simple closed contour C which is positive­
ly oriented with respect to the exterior normal on SI' From 
(1)-(4), the scattered fields obey the following conditions on 
C: 

on C, (5) 

nz·Ez - nl·E I = 2n·E i
, nz·Hz - nl·H I = 0, on C, (6) 

where the subscript 1 (2) denotes the approach to C from S I 
(Sz), and n denotes the exterior unit normal on S. 

Since the scattered fields are not continuous across C, 
the divergence theorem is not directly applicable. lz

.
13 For 

this reason an auxiliary surface.2'r> is constructed by using 
each point P of C as the center of a circle of radius 7 which 
lies on the plane normal to both Sand C at P. For C suffi­
ciently smooth and 7 sufficiently small, the resulting struc­
ture is a tubelike, doubly connected, closed surface sur­
rounding C. Denoting by u the part of S intercepted by this 
tube and .2' r the part of the tube exterior to S (Fig. 1), the 
divergence theorem is applied in the closed region whose 
boundary consists of the closed surface (S - u) U.2'r and the 
surface of a sphere whose radius eventually recedes to 
infinity. 

Under the assumption that the scattered fields are con­
tinuous in the closed region above and that they satisfy the 
radiation conditions at infinity, then the application of the 
divergence theorem in the form of a vectorS or a dyadic l4 

Green's identity yields 

E(r') = lim ( AdS 
r--.() J(S - a)UI

r 

_1_' lim ( n.VX(HVg) dS, 
WE r--0 Js - a)UI

r 

r't(S - u)U.2'r , (7) 

with 

A = n.EVg + (nXE)XVg + iWflgnXH, (8) 

g(r, r') = eiklr-r'I/41Tlr - r'l, (9) 

and a similar expression holding for H. The constants E and 
fl stand for the permittivity and permeability of the medium 
while wand k stand for the angular frequency and the wave 
number of the incident wave (e - iwt time-dependence). 

The last integral in (7) vanishes by virtue of Stokes' 
theorem; moreover, since S - u-+S as 7-+0, the integral of A 
over S - u tends to the integral of A over S, so that (7) 
becomes 

E(r') = LA dS + lim ( AdS. 
s T ___ O J~r 

(10) 
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Since the values that A takes on ~T are not known, the 
last integral in (10) cannot be evaluated directly. The only 
way this integral can be handled is by means of the finiteness 
of energy condition, the only remaining physical condition 
that can be employed in this problem. This condition re­
quires that the scattered fields are locally square-integrable 
or, in physical terms, that the energy contained in a finite 
region of space is finite and tends to zero with the volume of 
the region. If this condition obtains, it can be shown that the 
second integral in (10) tends to zero with r; ifnot, then no 
conclusion can be drawn and the divergence theorem fails to 
produce representations. 

The next step then is to determine whether the present 
problem satisfies the energy condition which, in mathemat­
ical form and for the region of interest, reads 

L,IEl
z 
dV < CX), L,IH IZ 

dV < CX) (11) 

VT being the region of space enclosed by UU~T' To this end 
the following theorem is proved in Appendix A with i being 
the unit vector tangent to C and pointing in the direction in 
which the curve is traced. 

Theorem I: If conditions (11) obtain, then the line 
integrals 

Li.(H 1 - Hz)g ds and Lt~(El - Ez)g ds, r'tS, (12) 

are necessarily equal to zero. 
An examination of the proof of this theorem reveals 

that the theorem remains valid if g is replaced by any func­
tion fwhich is defined and has continuous first partial de­
rivatives in the interior of uU~ T' This observation is of con­
sequence because of the following well-known theorem. 15 

Theorem 2: If a function Fis (Lebesgue) integrable in an 
open set OJ and if, for any function G which is continuous on 
OJ, the equation f ",FG dV = 0 holds, then F must satisfy the 
condition f", IF I dV = 0, and consequently F is equal to 
zero almost everywhere on OJ. 

These two theorems imply the following: 
Theorem 3: If the function i.(H 1 - Hz) and i.(E1 - Ez) 

are (Lebesgue) integrable on C and if (11) holds, then the two 
functions are necessarily equal to zero almost everywhere on 
C. 

In the physical optics approximation the functions of 
Theorem 3 are integrable on C since they are given in terms 
of the incident fields; in fact, they are continuous except at 
those isolated points at which i may not be continuous. Were 
conditions (11) then to hold, these functions would be identi­
cally zero except at a number of isolated points. This is cer­
tainly not the case for i.(H 1 - H 2) as witnessed from the 
second of (5) and, hence, the finiteness of energy condition is 
not satisfied. In tum, the second integral in (10) cannot be 
evaluated and the divergence theorem does not yield 
representations. 

As it is well known,9 scattered fields are required to 
satisfy the finiteness of energy condition and, therefore, the 
failure of the physical optics fields in this respect constitutes 
a most serious drawback of the method. Since, also, this fail­
ure is a direct result of the very initial assumptions, i.e., Eqs. 
(1)-(4), it is evident that the method is off to a bad start. 
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As mentioned in the Introduction, Sancer,5 ignoring 
the continuity requirement of the divergence theorem and by 
means of it, obtained a pair of representations for the fields 
resulting from the physical optics approximation. Using a 
dyadic form of the theorem he derived (7) with the integra­
tion extending over S rather than (S - U)U~T' For the sec­
ond integral he employed Stokes' theorem over SI and Sz to 
convert the surface integral into a line integral, his final re­
sults being 

E(r') = L [fi.EVg+ (fiXE)XVg+ iOJpgfiXH] dS 

i i A - - (·(H I - H 2)Vg ds , 
OJ€ c 

(13) 

H(r') = L Ifi.HVg + (fiXH)XVg - iOJ€gfiXEI dS 

(14) 

These are the Stratton-Chu8 modified formulas and, as it 
will be shown in the next section, they do not constitute 
integrals representations for the physical optics fields. 

Sancer's oversight of the continuity requirement can be 
seen to lead to inconsistent results. The same integral that 
led to the line integral in (13) can be written via the diver­
gence theorem in the form 

lfi.VX(HVg)dS = - lim ( fi·VX(HVg)dS 
s p-oO Js

p 

- !~ lRfi.V X (HVg) dS, (15) 

where Sp is a sphere of radius p and center at r', while S R is a 
sphere of radius R and center at r'. Both the integrals on the 
right are well-behaved and vanish before taking the indicat­
ed limits by virture of Stokes' theorem. Naturally, the state­
ment in (15) is questionable since the first integrand is not 
continuous on S, but Sancer's is not either. It is true that the 
continuity condition is only a sufficient condition of the di­
vergence theorem; nevertheless, it is a condition under 
which the theorem has been proven and as such it cannot be 
ignored. In Appendix B examples are given where the viola­
tion of this condition leads to inconsistent results. 

III. AN EXAMINATION OF THE EXISTING 
REPRESENTATIONS 

Since the divergence theorem fails to ascertain whether 
the modified Stratton-Chu formulas (13) and (14) are in­
deed solutions of the problem resulting from the physical 
optics approximation, it then remains to examine whether 
these formulas satisfy the requirements of the problem. As it 
is mentioned in the Introduction, these formulas were ori­
ginally obtained using physical arguments. Specifically, the 
electric and magnetic charge and current density on S were 
taken into consideration as well as electric and magnetic line 
charges on C. An alternative way of obtaining them is to 
consider only the electric and magnetic current densities and 
form the Hertz vectors 
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"II'(r') = _,_' I Ii X hg dS, "II'*(r/) = - _,_' I Ii X eg dS , 
WEJs wpJs 

(16) 

where Ii X h and Ii X e denote the assigned values of the tan­
gential magnetic and electric scattered fields on S as given by 
(1) and (2). In terms of these vectors the scattered fields at 
points off the surface are given by9 

E(r') = V' XV' X "II'(r') + iwpV'X "11'* (r') , (17) 

H(r') = V' XV' X "11'* (r') - iWEV'X"II'(r'). (18) 

These formulas are often called the Franz l6 representations. 
The modified Stratton-Chu formulas follow from them by 
performing the indicated differentiations and using standard 
vector identities; conversely, (17) and (18) can be obtained 
from (13) and (14) by reversing the steps. Thus, the two sets 
of representations are mathematically equivalent. 

For (13) and (14) to be solutions of the problem they 
must satisfy Maxwell's equations at points exterior to S, the 
radiation conditions at infinity, and also reproduce the as­
signed values of the fields on the scatterer. It can be readily 
shown that the first two requirements are satisfied. The third 
one, however, and, specifically, the conditions (5) and (6) 
across C do not obtain. This can be shown either by using 
(13) and (14) and utilizing the results of Miiller l3 or by first 
transforming (13) and (14) to what is known as Kottler's 
formulas and then employing potential-theoretic tech­
niques. These formulas are lO 

E ' l(ag ae) i ~ (r)= e--g - dS- g(e l -e2)Xtds 
s an an c 

i l~ - - t·(h l - h2)Vg ds , 
WE e 

(19) 

H(r')= I(h ag _g ah)dS_ I g(h l -h2)xids 
Js an an Jc 

(20) 

and can be obtained from (13) and (14) through a series of 
vector operations; conversely, (13) and (14) can be obtained 
from (19) and (20) by reversing the steps so that the two sets 
offormulas are mathematically equivalent. 

The representations in (19) and (20) are easier to work 
with in terms of a local analysis in a neighborhood of a point 
of C, for the surface integrals have been extensively studied 
in poten tial theory. 12.17 The class of surfaces to be considered 
is a fairly common one in both potential12 and scattering 
theory,13 and it can be described as follows. The surface S 
possesses a tangent plane at each one of its points. Moreover, 
for any point M of S and a rectangular coordinate system xyz 
with origin at M and the z axis in the direction of the normal, 
there exists a real number 17 > 0 such that for points (x, y) 
belonging to the disk x 2 + y2.;;;; 172, the part So of S intercepted 
by the sphere x 2 + y2 + ~.;;;; 172 can be expressed in the form 

z = I(x,y) , (21) 

with 
1(0,0) = fx(O, 0) = 1;,(0,0) = 0, (22) 

and 1 possessing continuous second partial derivatives in 
x 2 + y2.;;;; 172

• For M a point of C, the y axis points in the 
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direction in which C is traced while the x axis points toward 
the illuminated region (S2)' To avoid unnecessary complica­
tions of the mathematical arguments the portion Co of C 
intercepted by the sphere of radius 17 is assumed to lie on the 
yz plane, i.e., 

Co = {(y,z):z=/(O,y), lyl';;;;17l. (23) 

The local analysis is performed on (19) and (20) in the 
neighborhood of a point M of C. The point r' is allowed first 
to approach the points r l = (- 8, 0,/( - 8,0» and 
r2 = (8,0,/(8,0» of S, in turn, and then these points are 
taken to the origin along the curve r which, for simplicity, is 
defined by 

r=l(x,z):z=/(x,0),lxl.;;;;8<17l. (24) 

It is noted first that the line integrals in (19) and (20) are 
well behaved at r l and r2. Secondly, the function g can be 
written in the form 

( ') exp(ik Ir - r'l g r, r = 
417'lr - r/l + 

1 
=G(r,r')+ ---

417'lr - r'l 

417'lr - r'l 

where G and its gradient have expansions of the form 

G ( ') - ..!!5...- ~ (ik I r - r't 
~r - ~ , 

417' n~O (n +l)! 

(25) 

(26) 

VG(r, r/) = ~ r - r' ! (n +1)(ik Ir - r'lt 
417' Ir-r'l n~O (n+2)! 

The surface integral in (19) withg replaced by G is a continu­
ous function of r' everywhere in space. That this is the case 
can be directly concluded from Lemmas 73 and 74 of 
Miiller.13 

The remaining surface integral, namely 

_1_ I (e(r) ~ Ir _ r'I-1 _ Ir - rll ae(r») dS, (27) 
417' Js an an 

represents the sum of a double layer and a simple layer po­
tential. Since the density of the simple layer is a bounded and 
integrable function, then l7 the potential is continuous in the 
entire space. Similarly, 17 since the density of the double layer 
is continuous in a neighborhood ofrl' then 

lim _1_ I e(r) ~ Ir - r/l- I dS 
r'~r, 417' Js an 

with the last integral being continuous l7 on S, and with a 
similar statement holding as r-r2' 

With these results it follows from (19) that 

E(r l) = ~e(rl) + L (e(r) ag~~rl) - g( r, r l) a~~») dS 

- 1[el(r)-e2(r)]xig(r,rl)ds 

i i ~ - - t.[hl(r) - h2(r2)]Vg(r, r l) ds, 
WE c 

(29) 

with the corresponding expression for E(r 2) being obtainable 
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from (29) by replacing r l by r2; moreover, the expression for 
H at these points follows directly from (20). Using (29) to 
form the differences in (5) and (6) results in 

VX(E2 - E I) = lim[n2xE(r2) - nxE(r l)] 
b .0 

- ~lim[n2Xe(r2) - n l Xe(r l)] 
8--+0 

- lim ( (n2 X [(e l - e2) X t]g(r, r2) 
8--+oJc 

- n l X [eel - e2)xt]g(r, rl)J ds 

- _1_' lim ( t.(h l - h2) 
WE &-oOJc 

X [n 2 X Vg(r, r2) - n l X Vg(r, r l)] ds, 
(30) 

where v is the normal on S at M. The exclusion of the surface 
integral is due to its aforementioned property of continuity. 
Expressed in terms of the incident fields (30) becomes 

VX(E2 - E I ) 

2lim (n.Ei [(n2xq)g(r, r2) - (nIXq)g(r, rl)J ds 
{) >oJc 

+ .l:i. lim (t.Hi(n2XVg(r, r2) - nIXVg(r, rl)J ds, 
WE /i->oJc 

with 
q=txn. 

Similarly, 

v·(E2 - E I ) 

v·Ei -2 lim ( n.Ei (n2·qg(r, r2) - nl·qg(r, rl)J ds 
Ii--oOJc 

(31) 

(32) 

+ .l:i.lim (t.Hi[n2·Vg(r, r2) - nl·Vg(r, rl)J ds (33) 
WE b- >oJc 

while, 

,IX (H2 - HI) = V·H i +2 lim ( q.Hi
( (n2Xn)g(r, r2) 

/i-->DJc 

-(nIXn)g(r,rl)Jds, (34) 

v·(H2 - HI) = 2lim (q.Hi [n2·ng(r, r2) - nl·ng(r, rl)J ds. 
b-..oJc 

(35) 

All but one of the limits in (31 )-(35) exist and are equal 
to zero as shown in Appendix C. The one that does not exist 
is that of the second integral in (31). From (C20), Appendix 
C, 

ffHi[n2XVg(r, r2) - n l XVg(r, rl)J ds 

= [n(M) + q(M)]O(1) + t(M)O(8-1
) , 8-+0+; 

(36) 

thus the conditions (5) and (6) across C do not obtain and, 
hence, (19) and (20) [or, equivalently, (17) and (18), or (13) 
and (14)] are not solutions of the problem posed by the phys­
ical optics approximation. 

The above calculations not only show the incompatibil­
ity between the physical optics problem and its purported 
solution but also conclusively answer the question asked by 
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various authors,2.3.18 namely, whether (19) and (20) could be 
used in an iteration scheme which might converge to the 
correct solution of the original problem. Bouwkamp3 an­
swers the question in the negative and, in support, he cites 
the work of Schelkunoff. 18 The latter, however, used an ar­
gument which, in light of the conclusions here, is in error. 
His argument was that the fields resulting from (19) and 
(20), when brought to the surface, would reduce to those 
assumed by the physical optics approximation and, thus, the 
same scattered fields would result iteration after iteration. 
The true reason, of course, is that the limit in (31) does not 
exist in the direction tin which C is traced and, therefore, at 
least the last integral in (20) will not exist in the second iter­
ation. It is worth noting that, were the limit in (31) to exist 
and be equal to zero, then successive iterations of (19) and 
(20) might converge to the exact solution since the discontin­
uities in (5) and (6) are cut in half after one iteration as it is 
clear from (33) and (34). 

IV. CONCLUSION 

The purpose of this work has been twofold: first, to 
point out that the assumed surface fields of physical optics 
result in scattered fields which do not obey the finiteness of 
energy condition. A consequence of this is that the diver­
gence theorem cannot be used in deriving integral represen­
tations for these fields. The second is to show that the modi­
fied Stratton-Chu formulas are not solutions for the 
scattered fields of physical optics and that they cannot be 
iterated to improve the physical behavior of these fields. 

In conclusion, it should be mentioned that although the 
modified Stratton-Chu formulas are, in a mathematical 
sense at least, arbitrary formulas for the fields of an already 
approximated problem, they do seem to yield satisfactory 
results on occasion; thus, the present work, should not be 
construed as an attempt to discredit the method but rather as 
an effort toward a better understanding of it. 

APPENDIX A 

It is shown here that if the fields satisfy (11), then the 
line integrals in (12) are necessarily equal to zero. The first 
step toward this end is the parametrization of the curve C 
and the erection of local coordinates. 

With respect to an arbitrary rectangular coordinate sys­
tem xyz, the curve C can be parametrized in terms of its arc 
length starting with an arbitrary point P of C; thus 

C = (x, y, z): x = /(s) , y = g(s) , z = h (s), O<,s<,L J ' 
(AI) 

where L is the length of C, and f, g, and h are assumed to 
have continuous second derivatives with 
1'2 + g,2 + h ,2 = 1. The unit tangent vector to C is given by 

t~= f'(s)x + g'(s)y + h '(s)i. (A2) 

At each point P of C it is assumed that there exists
A 
a unit 

vector n normal to S at P which is also normal to t. Letting 

t' = nxt, (A3) 

then the triple (n, i, t') is a positive triple of orthonormal 
vectors at each point of C. 
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The vectors fi and i' lie on a plane perpendicular to both 
Sand C at the point P under consideration. On this plane the 
polar coordinate system (p, cp ),p>O, O<cp < 217", i~introduced 
with the pole atPand the angle measured from t to fi. Ifro is 
the position vector to a point of C, and if p is the position 
vector on the ('-fi plane, then the equation 

r = xx + yy + zz = ro + p (A4) 

defines a transformation of points (s, p, cp ) to points (x, y, z) 
with Jacobian 

J= ar.~ X ~ =P(I-PP' di). (A5) 
& op ocp ~ 

The continuity ofthe second derivatives of f, g, and h guar­
antees the boundedness of Idi Ids I which in turn guarantees 
that, for p sufficiently smal1, the Jacobian is positive and the 
transformation one-to-one. 

The next step is to restate the energy conditions (11) in a 
different but equivalent form. The claim is that if the 
integrals 

I1'IEI2 dS and 1"IH12 
dS 

exist and are continuous for p > 0, then conditions (11) are 
equivalent to 

( IEI2 dS = O(p -I + a), 
J~p 

(A6) 

where a is a positive real number. The surface ~p is defined 
in Sec. II and it is here referred to the coordinate system 
(s, p, cp). 

The proof of this theorem has as follows: If the first of 
(A6) holds then the limit 

li~.lTdp I IEI2 dS 
p 

(A 7) 

exists and, by Fubini's theorem 

( IEI2 dV = lim (Tdp ( IEI2 dS. 
Jv

c 
&-..0' JIi J~p 

(A8) 

Conversely, if the left-hand side of (A8) exists, the limit in 
(A8) exists and, since the integrand (surface integral) is non­
negative and continuous for 0 <p<r, the first of (A6) has to 
hold. The prooffor the second of(A6) follows the same lines. 

With this background, Theorem I of Sec. II can now be 
proved. Letting r' be a point strictly off the surface 
(S - a)U~p and using Maxwell's equations and standard 
vector identities, it follows that 

L"fi.VX [g(r, r')H(r)] dS 

= ( p·[VgXH +gVXH] dS 
J~p 

- L,,[Vg'(fiXH) + iCUEgp.E] dS, 

so that 
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(A9) 

I I
p

fi .VX [g(r, r')H(r)] dS I 

< I II'Vg'(fiXH) dS I + CUE I I p
gp·E dS I· (A 10) 

The last term in this can be estimated by means of (A6) and 
the Cauchy-Schwarz inequality as follows, 

<pdl(r')dl/l -I + U = D1(r')pU , (AI I) 

where d1(r') stands for the first integral; similarly, 

1 IpVg'(fi X H)dS 12 <Dir')pu. (Al2) 

Since a > 0, both integrals tend to zero with p and, conse­
quently, so does the integral in the left-hand side of (A9). But 
that integral can be transformed by means of Stokes' theo­
rem to the following 

i fi.VX(gH)dS = 1 t.Hgds- ( t.Hgds 
Ip C Z JC1 

-1i.(H2 - H1)g ds, 
p--..D c 

(AI3) 

where C1 and C2 are the curves where Sp intersects S. The 
curve C1 lies on Sl and Cz on S2' Since the surface integral in 
(AI3) vanishes withp, so does the line integral to its right, 
which completes the proof of Theorem I. 

APPENDIX B 

Examples are given here of the violation of the continu­
ity assumption of the divergence theorem. The region of ap­
plication is the unit cube O<x< I, O<,y< I, O<z< 1. The first 
example is with respect to the function 

{

X, O<x< I, O<,y<I, O<z<l, 

f(x, y, z) = 0, x = I, O<,y< I, O<z <!, 
!, x=l, 0<,y<1, ~<z<l. 

(BI) 

For the vector A = xf, 

(B2) 

= 0 + ~ (I (' dzdy = l . 
Jo JI12 (B3) 

Equations (B2) and (B3) show that the conclusion of the 
theorem does not hold; on the other hand, if 

{

X, O<x<I, O<,y<I, O<z<l, 

g{x,y,z)= 0, x=l, O<,y<I, O<z<~, 

2, x=I, O<,y<I, 1/2<z<1, 

(B4) 

then, with A = xg, 
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LV.AdV= 1 = in.AdS, (B5) 

which shows that the continuity condition is not a necessary 
one. 

The importance of the continuity condition can be bet­
ter visualized by considering examples for the one-dimen­
sional analog of the divergence theorem, namely the funda­
mental theorem of calculus. For example, for the function 

{

X O<x<l, 

f(x) = I: x = 0, 
2, x = I, 

the conclusion of the theorem holds, i.e., 

L rex) dx = f(1) - f(O) , 

but for the functions 

{
O, 

g(x) = I, hex) = 

it does not. 

APPENDIXC 

{
X, 

0, 

O<x< 1 

x=1 

The limits of (31) and (33)-(35) are computed here. To 
this end the curve C is split into two parts, the part Co of (23) 
and the rest. The integrals over C - Co have continuous inte­
grands which in the limit as 8-0 tend to zero. Each integral 

where 

p = (8 2 + y2)1/2, PI = (8y + yy)p-I, P2 = ( - 8x + yy)p-I . 

over Co is expressed as the sum of two integrals by means of 
(25) and (26). The integrals involving G are well behaved and 
tend to zero with 8. What remains are the integrals over Co 
involving the fundamental solution of Laplace's equation 
and its gradient. 

The first limit to be computed is that of the second inte­
gral in (31) which is 

II = f:/(y)(fi
2:;z - fil:(1)dY , (C1) 

where n I and n 2 are the exterior unit normals on Sat the 
points 

r t = - ox + f( - 8, 0)£, rz = 8x + f(8, 0)£, (C2) 

and 

with 

r =yy + f(O,y)£. 

The function g is defined by 

g(y) = i.W[1 + f;(O,y)]112 

(C3) 

(C4) 

= fj + h(O,y)£]-Hi = H~(y) + fy(O,y)H~(y). (C5) 

The integral in (Cl) can be written in the form 

(C6) 

(C7) 

In order to estimate (C6) the following information is needed. With K symbolizing from now on a generic constant, 

I 
1 1 / IR ~ - R i I 82(82 + y2) - - - - --'------'-- <.K 3 <Ko, 

RI R z RIRlRt+Rz) P 
(C8) 

1
1 1 I /1 1 /11 1 1 I 0 

R i - R ~ = Ii; - Ji; R i + R ,R
2 

+ R ~ ..:X p2 . 
(C9) 

These inequalities follow from (C2), (C3) and the properties of fas described by (21) and (22). Similarly, '3 ifn and fi' are unit 
normals on the portion of S under consideration, then 

In - n'I<K Ir - r'I, (ClO) 

where rand r' are the position vectors to the normals. Moreover, by the mean value theorem, thezcomponent, n lz and nzz , of 
fi I and fiz can be written in the form 

n 1z ( - 8) = 1 + niz( - 8 1)0, - 8 < - 0, <0, nzz (8) = 1 - ni,,(oz)O, O<oz <8, 

with the prime denoting differentiation. 
By (C5) the first factor of the first integral, Ill' of (C6) satisfies the inequality 

Ig(y) - g(O) I <K Iyl 
while, from (C8)-(Cll), the terms of the second factor are bounded by 

In2>; [f(O, y) - f(8, 0)] I K8 In zy [f(O, y) - f(8, 0)] I K8 -'------)---- < -, < -, 
R z p Ri p 
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(CI2) 

(C13) 
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I Gzz n Iz ) I fJ I nZz n Iz I fJ y -- - <X-, fJ -+ - <X-. 
~ R ~ pZ R ~ R ~ p3 

(CI4) 

The same inequalities hold for the terms involving Ii 1 and R I' This practice of making statements only at the point r Z (with the 
understanding that analogous ones hold at r l ) will continue to the end ofthe Appendix. From the last three statements 

j
71 dy 01(1]) III,I<KfJ 2" = 2Ktan - ~ K1T. 
_ 'I P fJ b-->O 

By (C13) and the inequality 

I 
y(l - nzJ I = I yn;z(fJz)fJ I <K ~ 

R i R ~ pZ 

the second integral in (C6) behaves as the one in (CI5). Moreover, since 

iXR z _ iXP2 = _ (yi + fJy)(_I_ _ I) 
R ~ pZ R ~ p3 

and 

/ Rli - ;3/ < : 
the third integral in (C6) also has the same behavior. 

The last integral, 114, in (C6) can be computed explicitly, 

I - A2fJj71 dy _ A 41] 
14 - - Y _ 71 (fJz + y2)312 - - Y fJ(fJz + 1]2)112 

so that, together with (CI5) and the subsequent discussion, 

II = (i + i)O (1) + yO (fJol) , fJ--+o+, 

which completes the proof of (36). 

The next limit to be computed is the second one in (33) 
which is 

I z = J~ /(y)C~12 - 1i~11) dy 

= J~ 71 [g(y) - g(O)] (n~1z - 1i~11) dy + g(O) J~ 71 (n2xR2X R~ nzy
R

2y 

+ (O)j71 (n2zRzz _ nlzR,Z) d 
g R3 R3 y, 

-71 Z I 

where g is defined in (C5). By writing 

(CI5) 

(CI6) 

(CI7) 

(CI8) 

(CI9) 

(C20) 

(C21) 

nzz [f(O,y) - f(fJ, 0)] nlz [f(O,y) - f( - fJ, 0)] 
+ - ~~ 

R~ R~ 
it can be readily shown that each of the first two terms as well as the combination ofthe last two are bounded, in absolute value, by 
KfJ /pz; hence, the first integral, I z" on the right-hand side of (C21) is bounded by 

IIztl<KfJJ
7I 

dy = 2KfJ 10g(1] + (fJz + 1]2)IIZ) ~ o. (C23) 
_ 71 (fJz + y2)112 fJ b-->O' 

The second integral, 122, in (C21) can be written in the form 

122 = J~J(nzxRzx +nzyRzY)(Rli - ;3)-(n IX R 1X +nlyR1Y)(R\ - ;3)]dY 

f71 n2xR2x + nzyR 2y - n'xR ,x - n,yR ,y 
+ ~. 

-71 p3 
(C24) 

Since 

(C25) 
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the first integral on the right of (C24) is of 0 (0). The second integral, [222' becomes, after substitution of the appropriate 
components of RI and R 2, 

I - JlI -0(n2x +nlx)+y(nzy -nlY)d _ £( + )JlI dy 
222 - 3 Y - - u nzx nix '3' 

-11 P -lIP 

_ oz( fxx(oz,O) fxx( - 01, 0) ) 21] (C26) 
- [1+f~(o,O)+f;(o,O)]I/2 - [1+f~(-o,O)+f;(-o,O)r/2 02(1]2+02)1/2 

and goes to zero with 0 due the continuity property of the second partials of f; thus 

122 = 0(1), o~+. 

The last integral, 123, in (C2l) can be written in the form 

_ JlI (n zz -1) R 2z (n lz -1) Rlz) JlI (R2Z I - - dy+--23 R 3 R 3 R 3 
-11 2 I -11 2 

RlZ) - dy 
R~ 

and, since 

l(n zz -l)Rzz l 0In2z (02)[f(0,y)-f(0,0)]1 0 
-----= <x-

R ~ R ~ P 

the first integral in (C28) tends to zero with 0 as in (C23). Moreover, since 

I 
Rzz _ ~ I <,Ko + I f(o, 0) _ f( - 0, 0) I 
R~ R~ R~ R~ 

and 

I 
f(o, 0) _ f( - 0, 0) I <.Ko + If(o, 0) - f( - 0, 0)1 = Ko + Ifxx(02' 0) - fxx( - 0 1,0)1 

J 1 '" 3 2p3' Ri Rj P 

then the second integral in (C28) behaves as the one in (C26), so that 

123 = 0(1), o~+. 

with 

From (C23), (C27), and (C32) it follows that 

I z = 0(1), o~+. 

The next limit to be computed is the one in (35) which is 

I=fll (y)(fi2.fi_ fil.fi)d 
3 g R R Y 

-11 2 I 

g(y) = q.Hi [1 + f;(O, y) ] liZ . 

Rewriting 13 in the form 

13 = JlI g(y)(_n_2X_n_X_+_nz...:...y....;ny,- _ nlxnx + nlyny ) dy + JlI g(y)(nzznz _ nlznz) dy 
- 'I R2 RI -11 R2 RI 

and noting that 

Inzxnx 1 

and 

(C27) 

(C28) 

(C29) 

(C30) 

(C31) 

(C32) 

(C33) 

(C34) 

(C35) 

(C36) 

(C37) 

I 
(nzz -1) nz _ (n lz -1) nz + nz(-I _ __ 1_) I <,0 I n2z (02) + n;z( - 01) I + 1_1 ___ 1_1 <,K ~, (C38) 

R2 RI R2 RI RI R2 R2 RI P 

it follows that 

13 = 0(0 1 -1), o~+, O<r< 1. (C39) 

The fourth limit to be computed is the first one in (33), which is 

14= JlI g(y)(fi z.q _ fil'q)dY , 
-11 R2 RI 

(C40) 

where q is defined in (32) and 

g(y) = fi.E i [1 + f;(0,y)r /2 . (C41) 

By writing 14 in a manner analogous to that in (C36) it readily follows that 
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14 = 0(8\ -1), 8-0+, 0 < r < 1 . (C42) 

The fifth limit is the one in (34) which reads 

15 = f71 g(y)(fi2Xfi _ fit Xfi) dy 
-71 R2 R\ 

(C43) 

with g defined in (C35). By writing this integral in the form 

f71 g(y){ xn2y nx - yn2x nz + i[ n2xny - n2y nX] _ _ x_n_\.::...y_n_Z _-_y_n_\X_n-=z~+_z_A=-[ n_\_X_n.::...y_-_n_\=-yn_x~] } dy 

-71 R2 R\ 

f 71 (n2Z n\z) f71 (n2Z n\z) -x g(y)ny -- - dy+y g(y)nx -- - dy 
-71 R2 R\ -71 R2 R\ 

(C44) 

it can be readily shown that the first integral is of 0(8\ -1) while the last two, by steps similar to those of( C38), are of 0 (8 ); thus, 

15 = oW -1), 8-0+, 0 < r < 1 . (C45) 

The last limit to be computed is the first one in (31) which is 

16 = f71 g(y)(fi2 xli _ fit Xli) dy 
-71 R2 R\ 

(C46) 

with g defined in (C41). Since 

fi2 X Ii = fi2 X (i X fi) = i(fi2·fi) - fi«(.fi2) , (C47) 

then 

16 = f71 g(y)i( fi2·fi _ fi I'fi ) dy _ f71 g(y)fi(fi2.i _ fi2.i) dy . 
-71 R2 R\ -71 R2 R\ 

(C48) 

Both of these integrals can be treated in a manner analogous to that of (C36); thus 
16 = 0(8\ -1), 8-0+, 0 < r < 1 . (C49) 
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The complete symmetry group of the one-dimensional time-dependent 
harmonic oscillator 

P. G. L. Leach 
Department of Applied Mathematics. La Trobe University. Bundoora. 3083. Australia 

(Received 12 January 1979) 

The five invariants for the time-dependent one-dimensional harmonic oscillator Hamiltonian are 
constructed. Using the linear transformation to the time-dependent oscillator Hamiltonian, the 
five invariants for the latter are obtained. The differential operators which generate the 
dynamical symmetry of this Hamiltonian have the same commutator relations as these of the time­
independent problem. An additional three operators are obtained using the method of extended 
Lie groups and have the same properties as those for the time-independent problem. Thus the 
complete dynamical symmetry of the time-dependent problem is the eight-parameter Lie group 
SL(3,R). 

1. INTRODUCTION 

In recent years there has been considerable interest in 
harmonic oscillator systems, both time independent and 
time dependent. This interest has expressed itself in several 
ways, especially in the construction of invariants and the 
determination of symmetry groups for such systems. Differ­
ent approaches are found in the literature. To some extent 
these differences follow from different concepts of what is 
the basic dynamical expression for the oscillator system­
Newton's equation(s) of motion, the Lagrangian, or the Ha­
miltonian. There are differences in the results obtained. To 
be more precise consider the one-dimensional time-indepen­
dent harmonic oscillator with equation of motion, Lagran­
gian, and Hamiltonian, respectively, 

ij + q = 0, 

L = !(f - !l, 
(1.1) 

(1.2) 

H = !p2 + 4q2 (1.3) 

(there is no essential loss of generality in taking the custom­
ary UJ2 as unity). The application of the Lie theory of ex­
tended groups to Eq. (1.1)1 showed that the complete sym­
metry group was the eight-parameter Lie group SL(3,R ). 
Applying Noether's theorem to Eqs. (1.2), Lutzky2 obtained 
a five-parameter subgroup ofSL(3,R ) corresponding to two 
linear and three quadratic constants of the motion. To obtain 
the additional three-parameter subgroup, Lutzky used the 
Langrange's equation of motion. The members of this sub­
group do not preserve the in variance of the action integral as 
does a Noether-derived operator, but they do preserve the 
invariance ofthe equation of motion since solutions are 
transformed into solutions. There does not appear to have 
been a similar treatment for the Hamiltonian (1.3) although 
for this problem the extension of the results for the Lagran­
gian (1.2) is particularly obvious. 

In considering the time-dependent one-dimensional 
harmonic oscillator (we restrict ourselves to one dimension 
to keep the discussion as simple as possible; the extension to 
higher dimensions is more a matter of algebraic rather than 
conceptual difficulty), again there have been different ap­
proaches. Defining the problem by 

ij + UJ2(t )q = 0, 

L = 4(f - !UJ2(t )q2, 

H = 4p2 + 4UJ2(t )q2, 

(1.4) 

(1.5) 

(1.6) 

Lewis,3 applying Kruskal's method' in closed form, con­
structed an exact invariant which is equally valid for the 
Lagrangian (1.5) or the Hamiltonian (1.6). This was 

I L = 4! q2 / p2 - (pi; - pq)2 J, ( 1. 7) 

(1.8) 

where the suffixes Land H refer to Lagrangian and Hamil­
tonian formulation, respectively, andp(t) is any solution of 

p + UJ 2(t)p = P - 3. (1.9) 

Leach5 used the method of time-dependent linear canonical 
transformations to obtain a form similar to Eq. (1.8) by 
transforming Eq. (1.6) to (1.3). Lutzky6 applied Noether's 
theorem to the Lagrangian (1.5) to obtain Eq. (1.7). 

None of the writers mentioned above has provided a 
discussion of the symmetry group and invariants of the one­
dimensional time-dependent harmonic oscillator. In this 
note we provide such discussion in the context of the Hamil­
tonian formalism. We start with a simple method for obtain­
ing the five invariants for the Hamiltonian (1.3). Using the 
linear canonical transformation between Eqs. (1.3) and (1.6) 
we construct the five invariants ofEq. (1.6) from those ofEq. 
(1.3). The five corresponding group generators are given. 
The remaining three operators which leave Newton's equa­
tion of motion invariant are also given. It is demonstrated 
that the operators have the same commutator properties as 
those for the time-independent problem, hence showing that 
the time-dependent oscillator also possesses the dynamical 
symmetry of SL(3,R ). 

2. THE INVARIANTS OF H(1.3) 

All manner of polynomial invariants for H (1.3) may be 
constructed by postulating a general form for the invariant 
with undertermined coefficients and then using the require­
ment that, if I is an invariant of H, 

dI aI 
- = [I,H]pB+ - =0. 
dt at (2.1) 
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Writing H (1.3) as 

H = lzTz , 

where 

z = [~], 
a linear invariant, denoted by 1\, has the form 

1\ = rTz, 

in which r is a coordinate free 2-vector. 

(2.2) 

(2.3) 

(2.4) 

Since the Poisson bracket of two scalars F and G is given 
by 

[F,G]PB = ( ~~ yJ( ~~). (2.5) 

where J is the 2 X 2 symplectic matrix 

J=[_~ ~], (2.6) 

Eq. (2.1) is simply 

rTz + fTJz = O. (2.7) 

Making use of the linear independence of the elements of z, 
Eq. (2.7) reduces to 

(2.8) 

where,\ and'2 are the elements ofr. This Hamiltonian sys­
tem of first order linear differential equations has a singular 
point at 

'\ = 0, '2 = O. (2.9) 

This particular solution is trivial in the present context. The 
general solution of Eq. (2.8) is 

'\ = a cost + b sint, (2. lOa) 

'2= -asint+bcost, (2. lOb) 

in which a and b are arbitrary constants. The general linear 
invariant of H (1.3) is 

1\ = (a,b)z cost + (b, - a)z sint. (2.11) 

If we write the row vector (a,b ) as cT
, the invariant is 

1\ = cT (I cost - J sint )z, (2.12) 

i.e., to within a factor of the magnitude of c, 1\ is the magni­
tude of the projection of the vector 

1\ = (I cost - Jsint)z (2.13) 

in the direction of some arbitrary constant vector c. Clearly 
the basic invariant is Ii' whose two linearly independent ele­
ments are 

III = q cost - p sint, 

1\2 = q sint + p cost. 

(2. 14a) 

(2. 14b) 

We observe that the invariant vector 1\ is simply the 
position vector of the point on the phase plane occupied by 
the particle at time t = O. The time development ofz is given 
by 

z = (I cost + J sint )1\ 

= (I cost + J sint )z(O) 

(2. 15a) 

(2. 15b) 

which describes a circle of radius z(O) in the phase plane. We 
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note that 

aI12 
=1\\, at 

aII1 
-- = -1\2' at 

(2. 16a) 

(2. 16b) 

This indicates that there are only two symmetry mappings 
associated with the first order invariants, a result which fol­
lows from the discussion given by Katzin and Levine. 7 

We could proceed to construct the quadratic invariants 
of H (1.3) by postulating the form 

12 = !zTMz, (2.17) 

in which M is a 2 X 2 coordinate free symmetric matrix, and 
solving the equation corresponding to Eq. (2.17), viz., 

zT(JM + !M)z = O. (2.18) 

For the one-dimensional system being considered here it 
eventuates that there are only three types of quadratic invar­
iant which are given by the following products of the linear 
invariants: 

212\ =n\ +n2 = p2 + q2, 

2122 = 21\/12 = (q2 - p2) sin2t + 2qp cos2t, 

2123 = n \ - n2 = (q2 - p2) cos2t - 2qp sin2t. 

(2.l9a) 

(2.19b) 

(2.19c) 

The result is not surprising. Any quadratic form in two var­
iables is a linear combination of the three linearly indepen­
dent expressions given above and no more than three linearly 
independent quadratic expression can be formed from two 
linearly independent variables. 

The five invariants which have been obtained here cor­
respond to the five invariants derived by Lutzky in Ref. 2 
where he used Noether's theorem to obtain the five Lie 
group operators and hence the invariants. The slight differ­
ences are due to the present writer wishing to keep the form 
of the invariants related to their physical interpretations. 
Thus, 1\1 and 112 are the initial positions (at time t = 0) in 
the phase while 121 is the Hamiltonian which in this problem 
is the conserved energy. 

We point out that the method outlined here generalizes 
easily to multidimensional oscillators and that suitable oper­
ators may be obtained for the corresponding quantum me­
chanical problem. 8 In the latter problem the products are 
symmetrized, a process which follows naturally if a matrix 
formulation is used. For the quantum mechanical problem it 
is convenient to define new operators. They are 

A ± =2~1/2!II1±iIJ2J, 

B ± = 123 ± iI22' 

C=I21 • 

(2.20a) 

(2.20b) 

(2.20c) 

The A 's are the time-dependent creation and annihilation 
operators. We note that in higher dimensional problems 
there is an additional class of invariants whose elements con­
stitute the angular momentum tensor. 

3. TRANSFORMATION TO THE TIME-DEPENDENT 
OSCILLATOR 

A canonical transformation of the Hamiltonian 

P.G.L. Leach 301 



                                                                                                                                    

H = !zTAz 

to the Hamiltonian 

ii= !zTAz 

may be accomplished by the linear transformation 

z=Sz, 

where (cf. Ref. 5) 

S=JAS-SJA, 

SJS T =J. 

(3.1) 

(3.2) 

(3.3) 

(3.4a) 

(3.4b) 

The equation (3.4a) arises from the requirement that the de­
scription of the time development of the system be equiv­
alent in either the z or z coordinate system, i.e., 

and 

. aii -
z=J- =JASz 

°Oz 

~ d(Sz) . 
z= -- =Sz+SJAz. 

dt 

(3.5a) 

(3.5b) 

The number of arbitrary constants in the general solution of 
Eq. (3.4a) is reduced by the requirement (3.4b), which is the 
condition that the transformation be canonical. 

For the particular case of the transformation from 
H (1.3) to H (1.6) we take H (1.3) as ii. The transformation 
has been shown to be5 

~z:z=RSz, 

where 

(3.6) 

_ [CI cosWI + C2 cosW2, 

R - C I sin WI - C2 sinW2, 

- CI sinWI - C2 SinW2 ] 

CI cosWI - C2 cosW2 ' 

(3.7a) 

S= [~-; ~], (3.7b) 

and 

WI = L (p-2-l)dt', W2= L (p-2+ l)dt', (3.8a) 

p + ui(t )p = p - 3, 

cf-c~=1. 

4. INVARIANTS FOR THE TIME-DEPENDENT 
OSCILLATOR HAMILTONIAN 

(3.8b) 

(3.8c) 

As invariance is independent of the coordinate repre­
sentation, there are five invariants for H (1.6) which are ob­
tained by expressing the invariant derived in section two in 
terms of the new coordinates. Using the transformation (3.6) 
with the specific expressions for Rand S given by Eqs. (3.7a) 
and (3.7b), respectively, we have 

III = (coshC + sinhC)!p - Iq cosW - (pp -,oq)sinW I, 
(4.1a) 

112 = (coshC - sinhC)!p - Iq sinW + (pp - ,oq) cosW j, 
(4.1b) 

2121 = cosh2C!p - 2q2 + (pp - ,oq)21 

+ sinh2C!p - 2q2 - (pp - pq)2cos2W 
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_ 2p -- Iq(pp - pq)sin2W j, (4.lc) 

2122 = P - 2q2sin2 W _ (pp _ ,oq)2 

X sin2W+2p-Iq(pp_,oq)cos2W, (4.1d) 

2123 = cosh2C !p-2q2 cos2W _ (pp _pq)2 cos2W 

-2 P -\ q(pp - pq)sin2C J 

+ sinh2C !p -2 q2 + (pp _ pq)2 j, (4. Ie) 

in which we have written 

coshC = CI, sinhC = C2 , 

W = (' p - 2dt '. 
Jto 

(4.2a) 

(4.2b) 

If C2 is set at zero, 12\ is the form of the invariant reported by 
Lewis. J The general form given above was reported by 
Leach. 5b 

We may define a set of invariants independent of C by 
writing 

J\I = (coshC - sinhC)I\I 

=p' Iq cosW - (pp - pq) sinW, (4.3a) 

J I2 = (coshC + sinhC)I\2 

= p - lq sinW + (pp - pq) cosW, (4.3b) 

2J2\ = 2(12\ cosh2C - 123 sinh2C) = p - 2q2(pp _ pq)2, 
(4.3c) 

2J22 = 2122 
= !p - 2q2 _ (pp _ pqnsin2W 

+ 2p - Iq(pp - pq)cos2W, 

2J23 = 2( - 12l sinh2C + 123 cosh2C) 

= Ip-2q2-(pp-pq?lcos2W 

- 2 P - , q( pp - pq )sin2 W. 

(4.3d) 

( 4.3e) 

We note that the Lewis invariant now occurs without a pa­
rameter in Eq. (4.3c). 

The physical interpretation of some of these invariants 
is facilitated if we make use of the intermediate Hamiltonian 

(4.4) 

which is related to H (1.6) by the canonical transformation 

[;:] = [!p-' ~] [;]. 
Then 

J II = q' cosW - p'sinW, 

J\2 = q' sinW + p'cosW, 

J 21 = !(q,2 + p'2). 

In the (q', p') phase plane, taking to = 0, 

J" = q'(O), J 12 = p'(O). 

(4.5) 

(4.6a) 

(4.6b) 

(4.6c) 

(4.7) 

The motion of the particle along the phase space trajectory is 
given by 

[ q,] = [ c~sW sinW]J
I
, (4.8) 

p' - smW cosW 

where J, is defined similarly to II' This is a circular motion 
and J2 , simply represents the constancy of the radius, being 
half the square of the radius. 
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Reverting to Eq. (4.3) we may obtain the formal solu­
tionforqbyeliminatingpp -pqfrom(4.3a) and (4.3b). This 
IS 

q = P(J11 cosW + J I2 sinW), (4.9) 

which is of the same form as that given in Ref. 6, Eq. (10). 
Finally, we note that only two of the five invariants 

listed are functionally independent. It seems to us to be natu­
ral to select J 11 and J I2 as the independent quantities. Then 

2J21 = (J\I)2 + (J\2?' (4.9a) 

2J23 = (J\I)2 - (Jd2, (4.9b) 

(4.9c) 

These relations are the same as those which are found in the 
time-independent case (cf. Ref. 8). 

5. OPERATORS OF THE FIVE-PARAMETER SUBGROUP 

Now that we have the five invariants for the Hamilton­
ian of the time-dependent harmonic oscillator it is a simple 
task to obtain the corresponding differential operators 
which are the generators of transformations. To facilitate 
comparison with the time-independent harmonic oscillator 
as discussed by Lutzky,2 we adopt the nomenclature used in 
that paper. To summarize this, a generator G is given by 

a a 
G (q,t) = s (q,t) at + 1](q,t) iii (5.1) 

and the corresponding invariant, in the Lagrangian formula­
tion, is 

<P(q,q,t) = (Sq -1]) ~~ - sL + J(q,t). (5.2) 

In this instance 
L (q,q,t) = H2 - ~W2(t )q2. (5.3) 

We may determine S, 1] andJfrom the invariants given by 

Eqs. (4.3a)-(4.3c) and we have, replacingp by q, 
<P1(q,q,t) = - 2J22(q,q,t), 

<P2(q,q,t) = - 2J23(q,q,t), 

<P3(q,q,t) = - 2J\2(q,q,t ), 

<Piq,q,t) = 2J11(q,q,t), 

<Ps(q,q,t) = 2J21(q,Q,t). 

The corresponding operators are 

G1 = sin2W~ + (ppsin2W+ cos2W)q~, 
aw aq 

G2 = cos2W ~ + (pp cos2W - sin2W)q ~, 
aw aq 

a 
G3 =pcosW-, 

aq 

G4=psinW~, 
aq 

G
a. a 

5= - +ppq-. 
aw aq 

(S.4a) 

(5.4b) 

(S.4c) 

(S.4d) 

(5.4e) 

(5.Sa) 

(S.Sb) 

(S.5c) 

(S.Sd) 

(S.5e) 

We note that if w is constant and equal to one, p ~ 2 = W = I, 
W = t, and the expressions for the generators are the same as 
those given by Lutzky Ref. 2, Eqs. (24a)-(24e) for the time­
independent problem. These operators generate a five-pa­
rameter Lie group and have the following commutative 
relations: 

[G1,G2 ] = - 2Gs, [Gs,GIl = 2G2, [G2,GS] = 2G1, 

(S.6a) 

[G3,G4 ] = 0, (S.6b) 

[G3,GI1 = [G2,G4 ] = [GS,G4 ] = G3, 

[G 1,G4 ] = [G3,GS ] = [G2,G3 ] = G4 , 

(S.6c) 

(S.6d) 

which are exactly the same as those for the time-independent 
problem. 

We conclude this section by listing the expressions for S, 1], and! The order corresponds to the one to five ordering of the 
<P 's and G's: 

s(q,t) 1](q,t) J(q,t) 

p2 sin2W ~ { ~q2( pp sin2 W + cos2 W) } 
aq 

!...- { ~q2( pp sin2 W + cos2 W) ] 
at 

p2 cos2W ~ {!q2(pp cos2 W - sin2 W)} 
aq 

!...- I !q2( pp cos2 W - sin2 W) } 
at 

a a 
(5.7) 0 - IqpcosWJ - {qpcosW] 

aq at 

0 ~ {qpsinW} !...-{qpsinWJ 
aq at 

p2 ~ l!q2ppJ :t l!q2ppJ 

It should be noted that theS 'slisted in Eqs. (5.7) areas coefficients ofa lat. In Eq. (5.6), a laWis used, the two being related by 

a 2 a 
aw =p at (5.8) 

The appropriate variable to use in the operators in Wand not t because W is now the effective time variable. This is most 
readily seen from the Hamiltonian H I introduced in Eq. (4.4). Under the time scale transformation from t to W, Hamilton's 
equations for H' are 
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dq' , dp' 
dW =p, dW -q'. 

6. OPERATORS OF THE THREE-PARAMETER 
SUBGROUP 

The five invariants obtained in Sec. 4 relate to the Ha­
miltonian. The complete dynamical symmetry of the time­
dependent oscillator is made up not only of the five corre­
sponding operators, but also any operators which leave the 
Newtonian equation of motion invariant. These operators, 
as well as those given in Sec. 5, may be obtained by using the 
Lie theory of extended groups. This method is quite ade­
quately described in Wulfman and Wybourne (l.b) and it is 
not proposed to repeat their working. We shall simply sum­
marize the relevant results. 

Suppose that the generator G defined by 

a a 
G = s(q,t) - + 'Y/(q,t) - (6.1) at aq 

is a member of the complete dynamical symmetry group. Its 
second extension is 

G" = S :t + 'Y/ :q + I 'Y/t + ('Y/q - S,)q - Sql/S j :q 

+ ('Y/" + (2'Y/qt -S,,)q 
+ ('Y/qq -2 Sqt)i;2 - Sqqq3 

+ ('Y/q -2 St -3 q Sq)qj ~ . (6.2) 

If the Newtonian equation of motion is 

N(q,q,q,t) = 0, 

G"N=O 

(6.3) 

(6.4) 

since G is a generator of the symmetry group. The require­
ment that Eq. (6.4) be true whenever Eq. (6.3) is true leads to 
a set of partial differential equations for Sand 'Y/. 

In the case of the time-dependent harmonic oscillator, 
Newton's equation is 

q + o/(t )q = O. (6.5) 

When G " acts on this equation and the resulting differential 
equations are solved, in addition to the five operators already 
given, we obtain 

a 
G6=q-, aq (6.6a) 
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(5.9) 

Gg =p- lq cosW ~ + (p cosW _p-l sinW)q2 ~. 
aw ~ 

(6.6c) 

These three operators form a subgroup with the commuta­
tion relations 

which are the same as for the time-independent problem. 
These three operators also have the same commutator 

relations with the other five operators as in the time-inde­
pendent case. They are 

[G6,Gtl = [G6,G2 1 = [G6,Gsl = 0, 

[G7,Gtl = - G7, [G7,G21 = - Gg, 

[Gg,Gtl = Gg, [Gg,G21 = - G7 , 

[G7,G31 = - !(G1 + 3G6), 

[Gg,G41 =!( - G1 + 3G6), 

[G7,G4 1 = !(G2 - Gs), 

[G8,G31 = - !(G2 + Gs), 

[G7,Gsl = - Gg [Gg,Gsl = G7• 

(6.8a) 

(6.8b) 

(6.8c) 

(6.8d) 

(6.8e) 

(6.8f) 

(6.8g) 

Thus we have the result that the complete dynamical sym­
metry of the time-dependent one-dimensional harmonic os­
cillator is SL(3,R ). 

ACKNOWLEDGMENTS 

We thank C.l. Eliezer and G. Prince for useful 
discussions. 

'R.L. Anderson and S.M. Davison, J. Math. Anal. Appl. 48,301-15 (1974); 
C.E. Wulfman and B.G. Wybourne, J. Phys. A 9,507-18 (1976). 

2M. Lutzky, J. Phys. A 11, 249-58 (1978). 
3H.R. Lewis Jr., Phys. Rev. Lett. 18, 51~12 (1967); Phys. Rev. 172, 1313-
315 (1968); 1. Math. Phys. 9,197&--986 (1968). 

4M. Kruska1, J. Math. Phys. 3, 80&--28 (1962). 
'P.G.L. Leach, J. Math. Phys. 18, 1608-11 (1977); J. Appl. Math. 34, 49&--
503 (1978). 

6M. Lutzky, Phys. Lett. A 68,3--4 (1978). 
7G.H. Katzin and J. Levine, J. Math. Phys. 18,1267-74 (1977). 
8p.G.L. Leach, "The Invariants of Quadratic Hamiltonians, I: Linear and 
Quadratic Invariants for the Time-Independent Isotropic Harmonic Oscil­
lator," Preprint, Department of Applied Mathematics, La Trobe Universi­
ty, 1978. 

P.G.L. Leach 304 



                                                                                                                                    

On the infrared problem in non relativistic quantum electrodynamics 
w. F. Wreszinski 
Instituto de Fisica. Universidade de Sao Paulo. Sao Paulo 
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Following a suggestion of Hepp and Lieb, it is shown rigorously that the infrared divergences 
which occur in the problem of thermodynamic stability of a system of atoms (with a finite 
number of levels) interacting with an ultraviolet-cutoff quantized radiation field are entirely 
removed upon inclusion ofthe term in A2 in the Hamiltonian, in the special case where the atoms 
are placed at the points of a regular lattice. 

Since the appearance of the work of Hepp and Lieb,1.2 
several papers have studied the system of atoms or molecules 
with a finite number oflevels interacting with the quantized 
radiation field (with an ultraviolet cutoff) from the point of 
view of statistical mechanics. (See, for instance, Ref. 3 and 
references given there.) In particular, the influence of the 
approximations involved in the various studied caricatures 
of the above mentioned system on the existence or nonexis­
tence of the superradiant phase transition (first found in Ref. 
2) was considered in greatest generality in Ref. 3. There it 
was found that a necessary condition for a phase transition is 
the removal of either the dipole approximation, or of the 
limitation to a finite number of modes of the field, or of both. 

It seems thus important to study the system without 
any approximation and, in particular, to take into account 
the infinite number of modes of the radiation field. The most 
important result so far in this direction was the proof of 
thermodynamic stability by Hepp and Lieb in Ref. 2. In their 
paper they suggested that the infrared divergences which 
arose in treating this question (and which they ignored, by 
extra assumptions) would be mitigated by taking into ac­
count the term A2 in the Hamiltonian, whose influence on 
the thermodynamics has, incidently, been studied by several 
authors ever since.4-7 Their suggestion was taken up by Rza­
zewski and Wodkiewicz in Ref. 8, but their treatment was 
heuristic in one essential aspect: They ignored the propor­
tionality ofthe number of modes of the field to the volume, in 
the thermodynamic limit. 9 In this note, we prove rigorously 
that the inclusion of the term A2 not only mitigates but also 
eliminates the infrared divergences entirely, in the special 
case where the atoms or molecules are placed at the points of 
a (regular) lattice. 

Let K and L be integers, A be a parallelepiped in the 
three-dimensional cubic lattice 1}, given by 

A _ (nEZ': O<,ni<,L -1, i= 1,2,31, 

and A ... be the set 

A *_ !K: K j = (21T/L )nj : 

nJ = - (KL /2) + 1, ... , KL /2 (KL even), 

(1) 

or nj = - !(KL - 1), ... ,!(KL - 1) (KL odd);j = 1,2,31. 
(2) 

If K = 1, A ... is the lattice dual to A. K will play the role of an 
ultraviolet cutoff. We shall need the relation 

1 '" IK'n _ 8 VKEA •. TAT 6. e - X,o, (3) 

This is proved in the same way as the analogous relation for 
K=l. 

Consider a system of N atoms or molecules (which we 
take, for simplicity of notation, to be two-level and identical) 
in a cubical box A [for the moment, not necessarily of the 
form ofEq. (1)] of volume V = L 3, interacting with an ultra­
violet-cutoff quantized radiation field. The Hamiltonian 
may be written 

(4) 

where Tis the N-particle kinetic energy operator, and 
U = U (XI , ... ,xN ) is the operator of interaction between the 
atoms (assumed to satisfy conditions such as those men­
tioned in Ref. 2.) if A (A ') describes the remaining part of the 
system, with A ' denoting the set of modes of the field occur­
ring in the formal Fourier expansion ofthe vector potential. 
The latter is not defined at K = 0, hence A ' must exclude this 
point, and we shall take 

A'=A"'-!Oj, (5) 

whereA • is the set Eq. (2). Under this condition, the follow­
ing facts are a direct consequence of the methods of Ref. 2. 
H A (A ') is self-adjoint and bounded below on the Hilbert 
space 

2 A = C! I C;) ® .7 A' ® ~ A , 

where:Y A' denotes Fock space for the (finite) set of modes 
in A ., and ~ A = L 2(A N). The partition function 

may be shown to exist and satisfy the bound 

ZA(A ')<,ZA(A '), 

where 

(6) 

(7) 

ZA (A '):== 2N tr./.\ tr.".\ f dfl N exp [ - PH A (A ',n N)]. (8) 

above n N is the N-fold cartesian product of copies of the unit 
sphere in R3

, with 

dnn=sinOndOndqJn, REA, (9) 
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H", (A ',fl ") = ii", (A ',fl ") + U + T, 

where U and T are the same operators described before, and 

ii", (A ',fl ") 

~ I [[VK 0K.K + 2q~'.K] 
K.K'c"" (VK VK' )1/2 

Xa~,aK + PK,K,aK,aK + ptK,a~a~, I 

+ I ~ (rKaK + r~a~) 
Kc"" (VK) -

(to) 

In (to), 

(11 ) 

(12) 

In the above formulas,p = N IV denotes the density, E> 0 is 
the energy difference between the "up" and "down" levels, 
,pu and ,pd' respectively, are the corresponding wavefunc­
tions, aK and a~ are the usual annihilation and creation op­
erators, satisfying [aK ,a~, ] = °K.K' , and VK = 1 K 1 is the 
photon energy. Further, 

..z _ 3 () :+: _ 3 • () ± i<{,,, 
~n - '2 cos n' Sn - '2 sin n e , 

P = e
2 

p J.- " ei(K + K').n f ( Y) .f( Y) 
K.K' ~ 4m N!:A K K" 

(13a) 

e2 p 1 
q = ___ " ei(K - K').nc(y).c(y) 

K.K' ~ L "K "K' . 
4m N n~'" 

(13b) 

We have taken the vector potential polarized along the y 
axis, for subsequent simplicity. Equation (10) differs from 
the Hamiltonian considered in Ref. 2 just by addition of the 
diamagnetic term, proportional to A2. 

We now observe that, if we place the atoms at the points 
of a (regular) lattice, that is, take for A the set (1), it follows 
from Eq. (3) that the quantities P and q in Eqs. (13a) and 
(l3b) above simplify to 

PK.K' = (e 2/4m)0K. K" (l4a) 

qK.K' = (e 2/4m)oK.K' . (l4b) 

It is this special case that we shall treat subsequently. Note 
thatp = 1 and 

f~V) • f(:)K = 1. 

(other cases involve other factors which, of course, do not 
alter the final result.) 

Hamiltonian (to) reduces to (N = 1,1 1 = L 3) 

ii", (A ',D '" I) 

I VKa~aK+EI~ 
Kc/\' "'=/1 
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+2a~aK)+1] I _1_, 
KEC"" V K 

(15) 

where 1]~e2/4m. The above Hamiltonian may be diagona­
lized by a unitary Bogoliubov-type transformation: 

bK = aKaK + 13K a* K + YK . 

Condition [bK, b ~, ] = 0K.K' implies 

la K 12 - I13K 12 = I, V'KEA '. 

(16) 

(17) 

We shall choose the phase factors for each K such as to ren­
der a K, 13K, and YK real. 

We now require 

ii", (A ',fl l
"') = I (wKb ~bK + PK)' (18) 

K 

with ii given by Eq. (15), and WK >O,PK real, for all K. From 
Eqs. (18) and (15), we obtain the following conditions: 

aK=a_ K, fJK=13- K, YK=Y--K' 

(uKYK(aK + 13K) = (lIv;(2)rK , (19) 

wK(a~ +13~) = VK + (21]lvK), (20) 

wKa K13K = 1]IVK , (21) 

wK(13~ + y~) +PK = 1]IVK . (22) 

From Eqs. (17), (20), and (21) we obtain WK' a K, and 13K : 

WK = (vi. + 41])112, 

a~ = J.- ( VK + 21]lvK 
2 wK 

2 1 (VK + 21]IVK 
13 K = -

2 W K 

From Eq. (19) we obtain 

YK = ----------------
(vK)1/2wK (aK + 13K) 

whence 

_1] _ WK ( VK + 21]lvK ) 
PK = -----1 

V K 2 wK 

IrK 12 
- W K ----'----'----

wK(vi. + 41]) 

IrK 12 = -!(wK - v K ) - -----'---'---

vi. + 41] 
(23) 

Cancellation of the term 1]lvK in the last formula is crucial. 
The finite volume partition function Z", is defined as 

the limit (which we shall assume to exist) 

ZI lim Z1 (A ') , (24) 
,\' ./\'" 

where A * is the set (2). By Eq. (5), "limit" above means just 
adjunction of the point [0 I, and the above existence assump­
tion means that we suppose Z", (A ') to be defined for 
A ' = A *, although formal expressions occurring in it are 
not. 

Proposition: There exists a constant C> 0 such that 
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ZA .;;exp[C IA 11· (25) 

Proof Let E A (A ') denote the ground state energy of 
ii,l (A " n jA I). By Eqs. (23) and (18), 

IrK 12 
E,1(A ') =! L «(UK - V K ) - L (26) 

KEA ' KEA' 1{ + 47] 

It follows from Eqs. (7), (24), and a simple argument. [Actu­
ally iiA should be as in Eq. (15) but with a factor of! multi­
plying the photon energy term in order that the argument be 
valid, but this could have been done without affecting our 
conclusions (Ref. 2, p. 2521).], that (25) would result from 
the following lower bound: 

lim E A (A ');;;. - D 1 AI, for some D;;;.O. (27) 
A' ./\. 

Now, by Eq. (26) 

lim E A (A ') =! L «(UK - V K ) 
,~' .. ,1" KEA .. 

_ L IrK 12 
KEA' 1{ + 47] 

(28) 

The first term at the rhs of Eq. (28) satisfies Eq. (27) with 
D = O. The second term may be treated exactly as in Ref. 2, 
leading to a proof of Eq. (27). The arguments of Ref. 2 are 
somewhat simplified here, because the analogs of the func­
tions hi in Ref. 2, p. 2520, decay in the present case faster 
than any power of IKI in K-space. • 
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We note, finally, that the transformation from aK to bK 

[given by Eq. (16)] is implemented by an operator which is 
unitary on Y A " but which ceases to exist on the full Fock 
space, because of vacuum polarization. 10 For an analysis of 
the infrared problem in non relativistic quantum electrody­
namics from the point of view of quantum field theory, see 
Ref. 11. 
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Estimates and iterative processes for calculating the scattering amplitude for k = 0 are given. 

1. INTRODUCTION 

Consider the problem 

(H - k 2) If/ = [ - V2 + V (x) - k 2] If/ = 0, 

XER
3

, If/=exp[ik(n,x)] +u, (1) 

u-[exp(iklx/)/lxl1/(n,v,k), aslxl-oo, v=x/lxl. 
(2) 

Our main assumptions are (f -S R'): 

V(x)=Oforlxl>a, f lV(x)ldx<oo, 

(3) 

ka < 1, H> 0, V (x)EL ~oc • 

The problem consists in estimating the scattering amplitude 
/(n, v,k). The contents of this paper can be summarized as 
follows: 

(1) Two sided estimates for/are obtained; 
(2) Iterative process to calculate/is given; the process 

converges as a geometrical progression: 
(3)Hard-core potential is considered; 
(4) Some qualitative properties of/are described; 
(5) Explicit formula for one-dimensional scattering is 

given. 

2. PRELIMINARIES 

We start with the equation 

If/ (x) = exp[ik (n,x)] 

-f exp(ik Ix-yl) V(y)lf/(y)dy. 
41Tlx-yl 

If ka< 1 we can write this equation as 

If/(x) = 1 - f V(y)lf/(y) dy, 
41Tlx - yl 

(4) 

(5) 

the error being 0 (ka). With the same accuracy we get 

/(n,v,k) f = - (l/41T) f exp[ - ik (v,y)] V(y)lf/(y) dy 

= - (l/41T) f VIf/ dy. (6) 

Equation (5) is equivalent to the problem 

HIf/ = - V21f/ + V (x) If/ = 0 in R\ If/ (00) = 1. 
(7) 

a)Address after June 1,1979: Department of Mathematics, University of 
Michigan, Ann Arbor, Michigan 48109. 

Let If/ = 1 + cpo Then 

Hcp= _V2cp+ Vq:;>= - V, q:;>(oo) =0, (8) 

/ = - -I-f V dx - -I-f Vcp dy. (9) 
41T 41T 

In what follows we make use of the following theorem which 
was formulated and proved in Ref. I. 

Theorem I: Let A be a linear self-adjoint operator on a 
HilbertspaceH,D(A) = domA,R (A) = rangeA,/ER (A), 
Aq:;> = f Then the representation 

(Aq:;>,q:;» = max 1 (g,J) 12 , (10) 
gEOD(A) (Ag,g) 

holds if and only if A>O, i.e., (Ag, g»O, 'tigER. For 
(Ag, g) = 0 we define the expression under the sign max as 
zero. 

Remark I: The "if' part is known, the "only if' part is 
less obvious. The theorem gives a necessary and sufficient 
condition for the Schwinger stationary principle to be an 
extremal principle. 

3. POSITIVE POTENTIAL 

If V>O we derive from equations (5) the following 
equation 

(1 + B)h = V(X)1/2, 

f V(X)112V(y)1/2 
Bh = h(y)dy, 

41Tlx - yl 

(11) 

whereB>O inH = L 2(R3
). From (II) and Theorem 1 it fol­

lows that 

-41T /=f V1I2(x)h (x) dx = max (Vl12,g)2 ,(12) 
gEOH (g+Bg,g) 

where (h, g) denotes the inner product in H. Hence 

I 1(V112,g)1 2 

/< - - , VgER. (13) 
41T (g + Bg, g) 

To obtain a lower bound for/we apply (10) to Eq. (8) and use 
inequality H> O. As a result we get 

(_ V,cp) = max l(g,V)1
2 

(14) 
gEOD(H) (Hg, g) 

From (14) it follows that 

/> _ -1-f Vdx + l(g,v)1
2

, 

41T 41T{Hg, g) 

Vg€D(H), H = - V2 + V(x). (15) 
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Remark 2: Bound (15) was obtained without assump­
tion V(x);;.O. We used only assumption H> O. 

Another lower bound can be obtained so: Consider the 
functional 

E(g)= f (IVgI 2 + Vg2+2Vg)dx, (16) 

defined on W j (R3
). Equation (8) is the necessary condition 

for the minimum offunctional (16). Since functional (16) is 
quadratic, Eq. (8) is also the sufficient condition for mini­
mum of this functional. Hence 

E(g);;.E(tp) = J tpVdx= -41r/- J Vdx. (17) 

Here we took into account formula (g) and the identity 

J (IVtpI2+ Vtp2+ Vtp)dx=O, [see (8)]. (18) 

From (17) we get 

1> - -1-f Vdx- -1-f(IVgI 2 + Vg2+2Vg)dx, 
41i 41i 

'o'gEWj(R3). (19) 

This inequality is similar to the estimation of electrical ca­
pacity.2 In Ref. 3 an inequality similar to (13) can be found. 

4. ITERATIVE PROCESS TO CALCULATE f 

Theorem 2: Equation (11) can be solved by iterative 
process 

hn +1 = yhn - qBhn + qV 1I2(X), ho = qV I12(x), 
(20) 

where 

y = liB 11/(2 + liB II>, q = 2/(2 + liB II), (21) 

liB II is the norm of the operator B: L l(D ~L 2(D ), 
D = supp Vex). Ifh = limn~oo hn' then IIh - hn II = o(yn). 

Corollary: We can calculate/from the formula 

/= - _I-limJ V1I2(X)hn(x)dx. (22) 
41i n_oo 

Remark 3: It is clear that 

IIBI1 2..;J J [V(x)V(y)dxdy]!(16rlx-yI2), 

so liB 11..;(11 V IIR )/(41i), 

where IIVIIR is the Rollnik norm of Vex). 
To prove Theorem 2 we denote J + B = A, 

V l/Z(x) = u«x), so thatAh = u<, h = (J - qA )h + qu<. Ifwe 
take q as in (21) and set y = 1 - q, we can see that 
J - qA..;maxI<A<1 + liB II (1- qA. )..;IIB 11/(2 + liB II) = y. 
Hence process (20) converges as a geometrical progression 
with the denominator y. Such an iterative process can be 
found, for example, in Ref. 4. 

5. ONE-DIMENSIONAL SCATTERING PROBLEM 

If XEIR I, we get the following formulas instead of (5) and 
(6): 

'/I = 1 + f V(y)'/I(y) dy / = _1_ J V'/I d. (23) 
2ik ' 2ik Y 
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Multiplying by Vand integrating we find 

F = S Vdx RI --'-----, XE . 
2ik - S Vdx 

(24) 

6. HARD-CORE POTENTIAL 

If V(x) = 00 in a bounded domainDER3 with a smooth 
boundary r, a = diam D, ka<l, then the solution to prob­
lems (1) and (2) can be found in the form 

v = r exp(ik Ix - sl) a(s) ds, 
Jr 41ilx-sl 

vir = -exp[ik(n,s)]lka<1 = -1, 

/= _1_ r exp[ -ik(v,s)]a(S)dsl 
41r Jr ka<1 

= _1_ r a(s) ds. 
41i Jr 

From (25) we get 

r a(s) ds =-1. 
Jr 41rlt-sl 

(25) 

(26) 

(27) 

Hence S r a(s) = - C, where C is the electrical capacity of 
the conductor D. Therefore/ = - C /41i. In Refs 1 and 2, 
two sided estimates for C are given. In Ref. 5 an iterative 
process and approximate analytical formulas to calculate C 
with the prescribed accuracy were given. In particular, 
C;;'41iS 2J-t, where S = meas r, 
J = f r f r Is - t I -I ds dt. In many cases the formula 
C=41iS 2J- I gives an error -3% (e.g., in the calculation of 
the capacity of a parallelepiped of arbitrary shape, of a circle 
cylinder of arbitrary length). If Rand r are the radii of the 
minimal ball containing D and maximal ball which is con­
tained in D, then r < C < R. So 

- R /41i<f..; - r/41i. (28) 

The Neumann boundary condition and low-frequency elec­
tromagnetic wave scattering was considered in Ref. 6. 

7. MONOTONICITV OF '" 

If 0..; VI ..; Vz , then from (5) and the maximum modulus 
principle it follows that '/II ;;. '/12 ;;.0, where '/Ij corresponds to 
1j, j = 1,2. If VI ..; V.;;; V2 , V; = const, then '/II ;;. '/I;;. '/Iz ;;.0, 
where for 'P; we can give an explicit formulas since 
1j = const. 

8. ALTERNATING POTENTIAL 

Because of Remark 2 we must obtain only an upper 
bound for f We are not going to get the best estimates, but 
rather to describe a simple method of getting the upper 
bound and give a simple example. First we note that if 
V(x) = V + (x) - V _ (x), where V + (x) = V(x) if V(x);;.O, 
V + (x) = 0 if V(x) < 0, V _ (x) = I V(x) I if V (x)..; 0, 
V _ (x) = 0 if V(x) > 0, and H = - V2 

- V _ (x), then 
(Hg, g);;'(H _ g, g). To simplify the study we make addi­
tional assumption 

H_ >0. (29) 

Then from (9) and (14) it follows that 
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f<. - -l-f V(x) dx + max l(g,V)1
2

. (30) 
41T gED(H ) 411'{H _ g, g) 

To obtain a simple upper bound for/we must estimate 
(H _ g, g) from below. In Ref. 7 the following inequality was 
proved (II II = II IIH~L2(R3»: 

(H_ g,g)~IIVgI12(1-flp-INp)' (31) 

where 

H _ = Ho - V _, N: = f Iy - X 1
2p 

-3 vP_ (x) dx, 

p'= ~1 ' p>l, 
p-

fl = _P_(411'{P -1) r 2(p»)lIP 
P P -1 r(2p) 

r (p) is Gamma function, andYER3 is an arbitrary point. Our 
assumption concerning V_can now be formulated so: 
There exist a point yER3 and a number p > 1 such that 

Np <flp' (32) 

We note that inequality (32) implies (29). 
Theorem 3: If inequality (32) holds, then 

f<. - -1-f V(x)dx + -1-f I V (x) I dx flp 
41T 41T flp - Np 

(33) 

Proof We have 

l(g,V)1 2
.-- SIVI dxs lV(x)llgI 2 dx 

max -'-'-=---'-'- '" 
(Hg, g) IIVgIl2(l - fl p-

I Np ) + (V + g, g) 
(34) 

Here we used the inequality (31). Since Ho - V _ ~O we 
have 

IIVg/l2~ J V_ Igl
2

dx. (35) 

Hence the right side of (34) is less than 

J A+B 
IV 1 dx , A =(V - g, g), 

cA +B 
(36) 

B =(V + g, g), c=l - fl p-
I Np • 

From (32) we conclude that 0 < c < 1. Therefore 

A +B <. ~. (37) 
cA +B c 

From (37), (36), and (34), we get (33). 
Remark 4: We could get the upper bound using differ-
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ent ways. Here are two examples. If for some a(x) > 0, 
S I VI 2O'- I(X) dx<. 00 and (Hg, g)~fO'lgI2 dx, then 
max( I (g, V) 12)/(Hg, g)<.S I V 120' dx. This is the first way to 
get an upper bound forf In Ref. 8 inequality (Ho g, g) 
~flq lI,.<q -3)/2q gll~ 2 q(R') was used. Connections with Pade ap­
proximation were indicated and a very good upper bound for 
twas obtained. In general any norm Illglll such that 
I(V, g)1 <,CI (V)lllglll and(Hg, g)~C2 (V)lllgII12canbeused 
for obtaining an upper bound for f 

1 J Ci(V) /<.- - Vdx+ . 
41T 41TC2(V) 

(38) 

Remark 5: If inequality 

lIB 0-
1 V/lC(l13) <.b < 1 (39) 

holds, then Eq. (5) can be solved by means of iterative pro­
cess, 1/1= };r~o (-1) i(H 0-

1 V)il, In this case we can also 
get a simple upper bound for f 

1 J 1 J J V(x)V(y) /= - - Vdx+ -- dxdy+ ... 
41T (41T)2 Ix-yl 

<. - _1_ f V dx + _1_ J J V(x)V(y) dx dy 
41T 16r Ix - yl 

1 J b
2 

+ - IVldx--. 
41T 1 - b 

(40) 
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A study of the completeness properties of resonant states 
w.J. Romoa) 

DepartmentojPhysics, Carleton University, Ottawa, Ontario KIS5B6 

The completeness properties of the discrete set of bound state, vi:tual ~tates, .and resonant ~t~t~s 
of a Hamiltonian H is investigated, where H describes a system m which a smgle no~relatl~lstlc­
spinless particle moves in a central cutoff potential. A limited form ~f co~pleteness I~ ~btamed. 
It is shown that the convergence of the resulting "completeness senes" IS very sensitive to the 
detailed mathematical structure of the potential. 

I. INTRODUCTION 

This is the final article of a set of articles 1-3 in which we 
examine the completeness properties of the set of all bound 
states, virtual states and resonant states of a simple quantum 
mechanical system. Resonant states were first introduced by 
Gamow' in his study of alpha decay. Later they were em­
ployed by Siegert in a derivation of a dispersion formula for 
nuclear reactions5 and by Humblet and Rosenfeld in the for­
mulation of a nuclear reaction theory.6 Many of the subse­
quent papers dealt with the development of a scalar product 
for resonant and virtual states,7-1' with their inclusion in per­
turbation calculations,l1-13 with their role in the shell model 
approach to nuclear reactions11.15.16 and with their employ­
ment in calculations of cross sections for direct reactions to 
unbound final states. 17.18 The completeness properties of 
these states has received much less attention. Perhaps, the 
most practical form of a completeness relationship that in­
volves the resonant states is the one given by Berggren. 10 
Starting from the usual completeness relationship consisting 
of a sum over bound states and an integral over continuum 
states, Berggren derived his relationship by analytically con­
tinuing the integrand of the continuum integral and deform­
ing the path of integration past a finite number of resonance 
poles. He then separated the resonance and background con­
tributions, obtaining a completeness relationship that in­
volved a sum over the bound states plus a finite set of reso­
nance terms and an integral over the deformed path. By 
inserting this expansion of the unit operator between the bra 
and ket of a scalar product, he then 19 obtained a modified 
sum rule that includes resonant state contributions. Work of 
a similar nature has been reported by Berrondo and Garcia­
Calderon. 2o 

In this article we shall determine the conditions under 
which matrix elements of the form (tPl IPa ItP2) can be ex­
panded in terms of the infinite but discrete set of bound, 
virtual and resonant states of a Hamiltonian H describing a 
system in which a spin less nonrelativistic particle of mass m 
moves in a central potential V (r) that vanishes for r > R. The 
operator Pa in the matrix element is the projection operator 
defined by 

Pa tP(r) = {~r~, if r<,a, 

if r>a. 
(1.1) 

In Ref. 1 we established the existence of such an expan-

'''Supported in part by a research grant from the National Research Council 
of Canada. 

sion for the particular case in which V(r) = A.O (r - R), tPl (r) 
and tP2 (r) were any pair of s-wave eigenfunctions. of an infi­
nite square well potential of radius R, and the radIUS param­
eter a is less than or equal to R. Here we shall extend our 
consideration to include all partial waves and all potentials 
that vanish beyond the fixed radius R and are reasonably 
smooth functions of r for r<,R. (A precise definition of the 
class of potentials will be given in Sec. 2.) To derive the ex­
pansion of < tPl IPa 1 tP2) we follow the same procedure em­
ployed in Ref. 1. One first determines the condit~ons under 
which the Mittag-Leffler expansion of the functIOn 

112 (k, a) = (tPl IPAE + iE - H) - IPa ItP2) , 
is convergent. One then obtains the desired expansion of 
(tPl IPa ItP2) from a careful examination of limE .• 00 (EII2)' 
The first step, that of establishing the Mittag-Leffler expan­
sion of 112 was carried out in Ref. 2, however, when an at­
tempt was made to complete the study it became clear that 
the asymptotic forms of the radial wave functions and Jost 
functions employed in Ref. 2 were inadequate to complete 
the project, so a detailed calculation of these asymptotic ex­
pressions was carried out and the results reported in Ref. 3. 
To simplify the derivation of the asymptotic formulas, the 
behavior of the potential near the origin, r = 0, and near the 
cutoff radius, r = R, was restricted somewhat more than it 
has been in Ref. 2. On the other hand, some restrictions 
placed on the behavior of V (r) in the region 0 < r < R were 
removed. Consequently, the class of potentials considered in 
Ref. 3, which we shall again employ in this work, is different 
from that considered in Ref. 2, and therefore the derivation 
of the Mittag-Leffler expansion of 112 must be repeated. 

In Sec. 2 specification of the properties of the potential 
V (r) and the wavefunction tPi (r) are given and the conditions 
for the convergence of the Mittag-Leffler expansion of 
112 (k, a) are determined. In Sec. 3 the asymptotic form ofthe 
terms of the Mittag-Leffler series is examined and conver­
gence is examined in more detail. In Sec. 4 the limiting proce­
dure alluded to above is carried out and the desired "com­
pleteness relationship" for the set of resonant, bound and 
vertical states is obtained. Finally, in Sec. 5, the article is 
concluded with a discussion of the results. 

2. MITTAG-LEFFLER EXPANSION 

In this section we shall determine the convergence con­
ditions for the Mittag-Leffler expansion of the matrix 
element 

(2.1) 
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where ¢I and ¢2 are wavefunctions of the form 

¢i(r) =,- IX;(r)Y'm(f) , (2.2) 

Pa is the projection operator defined by Eq. (1.1) and H is the 
single particle Hamiltonian 

H = - V2 + V(r). (2.3) 

(We shall take f? /2m = 1 throughout this paper.) It shall be 
assumed that V(r) is a real central potential that satisfies the 
following list of properties: 

(a) V (r) = ° for r > R, where R is a fixed positive radius. 
(b) Immediately below the cutoff radius, i.e., for 

R (1 - 8 )<r<,R with ° <8<1, V(r) = [1 - (r/R)]" 
XPo(l-r/R),wherea)OandPo(t) };j~O vjtjisapower 
series that converges for all tin [0, 8]. 

(c) Near the origin, V(r) = r - YQo(r), where r < 2 and 
Qo (r) = };t~ I 1"/j is a power series that converges for all r in 
the closed interval [0, ER ] with ° < E < 1. 

(d) V (r) is piecewise continuous and bounded, and all of 
its derivatives up to order L)a + 2 are also piecewise con­
tinuous and bounded in the open interval (0, R ). 

(e)d LV(r)/dr has n points of discontinuity in the open 
interval (0, R ). One defines Ri' with ER < R 1 < R2 < '" 
<R" <R (1 - 8), to be such a point, and further define mi 
to be the smallest interger for which d m, V (r)/ drm

, is discon­
tinuous at R i • 

(t) Finite right-and left-hand limits of d LV (r)/ dr are 
assumed to exist at each of the points R i • 

Since the states ¢ I and ¢2 are eigenstates of L 2 and L z , 
and V(r) is a central potential, 112 can also be written as 

112(k, a) = f dr f dr' x;(r)G\+l(k; r, r')X2(r') , (2.4) 

where G i j l(k;r,r') is the 1 th partial wave component of the 
full Green's function (rl(k 2 + iE - H) - Ilr'). The Green's 
function G i t )(k;r,r') can be written2l 

G i + l(k; r, r') 

= (- 1)' t Ik 'tP,(k, r < )f,( - k, r»/ f,( - k), (2.5) 

where r < and r -> are the lesser and greater, respectively of r 
and r', while tP,(k,r) andf,( - k,r) are regular and irregular 
solutions, respectively, of the radial Schrodinger equation 

d 2 1(1+1) 2 
- -, ¢, + V(r)¢, + , ¢, =k ¢,. (2.6) 

dr" r' 

The regular solution also satisfies the boundary condition as 
r---+O given by 

lim (21 + l)!!r ,- ItP,(k, r) = 1 , (2.7) 
r ~() 

while the irregular solution satisfies 

lim e '''j,( - k, r) = i' . (2.8) 

Finally, f, ( - k ) is the J ost function defined by 

f,( - k) = lim (- kr)1A - k, r)/(2/-1)!! (2.9) 
,--0 

To complete the specification of 112 (k,a) it shall be as­
sumed that the radial functions Xi (r), with i = 1 and 2, and 
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all of its derivatives of order <, L are bounded and piecewise 
continuous for all 0< r < R, and that near the origin 

(2.10) 

where the power series converges for all r in the closed inter­
val [0, ER] with ° <E<1, and Si < 1/2 for i = 1,2. Once 
again, as in the case of V (r), the properties of Xi (r) are more 
carefully spelled out in this paper than they were in Ref. 2. 

Although the class offunctions to which Xi (r) and V (r) 
belong are somewhat different in this paper than the corre­
sponding classes off unctions in Ref. 2, the arguments used 
to obtain the general analytic properties of 112 (k,a) given in 
that reference were sufficiently general so that they apply in 
the present situation as well. Hence, one finds that 112 (k,a) is 
a meromorphic function of k with an infintie number of 
poles that lie at the zeros off, ( - k ). The zeros off, ( - k) in 
the upper half-plane are restricted to lie at points iKn on the 
imaginary axis, where - K ~ is a bound-state energy. These 
zeros will be of unit order. 

The zeros off,( - k) in the lower half-plane will be 
infinite in number, of finite order and symmetrically distrib­
uted about the imaginary axis. There may be at most a finite 
number of zeros along the imaginary axis. The only zero that 
f,( - k) can have on the real axis will be found at k = 0. For 
simplicity, and without appreciable loss of generality, as was 
explained in Ref. 2, it shall be assumed that all zeros are 
simple zeros. 

The poles of 112 (k,a) or equivalently the zeros of 
f,( - k), shall be ordered as follows: The poles kl' k2' ... k N 

will correspond to the N poles which lie along the imaginary 
k axis, where N is a finite number. 21 The poles k n with n > N 
will correspond to poles in the fourth quadrant of the k 
plane, so ordered thatifn > m > Nthen either Ikn I> Ikm I, or 
Ikn 1= Ikm I and IImk" I> IImkm I· The poles in the third 
quadrant will be labeled by k _ n with n = N + 1, N + 2, .. ·. 
They are related to the fourth quadrant poles by 

k __ II == - k ~, (2.11 ) 

Since the location of the poles vary from partial wave to 
partial wave, they should be labeled by an additional sub­
script 1 to identify the partial wave, however, for simplicity 
this label has been supressed. 

We are now in a position to consider the Mittag-Leffler 
expansion of 112 (k,a). The approach shall be the same as the 
one used in Ref. 2. According to Cauchy's residue theorem. 22 

_l_.re 112(k,',a)dk' 

21Tl j c", k - k 
N oW ,,(a) 

=II2(k,a)+ L--
,,_ I k n - k 

x + I oW (a) 
+ L L a" , 

II = JV t 1 a -=- - I kutl - k 
(2.12) 

where m>No >N, em is a circular path2l centered at k' = ° 
that encloses all poles k +" with I n I <,m, but excludes all 
other poles, &? T" is the residue of 112 (k', a) at k' = k + ", 

and k is a point inside the contour em at which 112 (k " a) is 
analytic. Nc is an integer that is sufficiently large so that k m 
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assumes its asymptotic form, to be given later, and 
I k n I > I kj I for all I n I > Nc and UI <N. The Mittag-Leffler 
expansion follows from Eq. (2.12) if one can show that the 
contour integral on the left-hand side of Eq. (2.12) vanishes 
as m tends to infinity. For sufficiently large m, Ik'i ;;;.21k I for 
every point k' on C m' and thus 

I 
~ 112 (k:-:)dk' 1<2~ I 112 (k:,a) Ildk'l. 
j c,,' k k j C m k 

(2.13) 

From the properties of the radial wavefunctions Xi (r) with 
i = 1 and 2, it can be seen that IXi(r) I is integrable over the 
interval O<r<R. Using this fact and the bounds on 
G j + )(k;r,r') given by Newton,21 one can easily show that 
1112 (k,a)lk I <constx Ik 1- 2 for all k on Cm with 1m k;;;.O. 
Hence, the contribution to the contour integral arising from 
that portion ofCm for which 1m k ';;;.0 will vanish as m-oo, 
for any a<R. 

Although the changes in the classes off unctions to 
which Xi(r) and V (r) belong, do not produce any important 
changes in the asymptotic form of 112 (k,a) for points in the 
upper half k plane, the same is not true for points in the lower 
half k plane. To determine the asymptotic form of II2 (k,a) as 
k_ 00 with 1m k < 0, one must first determine the asymptot­
ic forms of ¢l1(k,r),J;( - k,r) andJ;( - k), as can be seen 
from Eqs. (2.4) and (2.5). The asymptotic forms of ¢ll(k,r) 
andJ;( - k) for the class of potentials being considered were 
reported in Ref. 3. The techniques employed in that refer­
ence to determine the asymptotic form of ¢ll(k,r) can also be 
employed to determine the asymptotic form ofJ; ( - k,r). To 
illustrate the technique and to define some important func­
tions we shall give a brief derivation of the asymptotic form 
ofJ;( ± k,r) as k-oo in ii1, where kEii1 if Ik I ;;;'K» 1 and 1m 
k<O. 

One first constructs a pair oflinearly independent solu­
tions to Eq. (2.6) for which the asymptotic form is known in 
the radial interval Rj <r<Rj + I . This construction is repeat­
ed until a pair of solutions is obtained for each of the inter­
vals [Rj' Rj + I] with j ranging from 0 to n + 2. The radius 
R j withj = 1 to n was defined in the specification of VCr), 
while the additional radii Rn 1- I and Rn + 2 are defined by 

Rn + I = R - Ik I - I and Rn + 2 = R , (2.14) 

and Ro will be a radius depending on Ik I defined so that Ro 
-0 but Ik IRo» 1 as Ik 1-00, for example one might choose 
Ro = const...;.-ln(lk IR) as was done in Ref. 3 or possibly Ro 
= 100(1 + 1!2? I k I - I, as in Ref. 2. The general techniques 
for the construction of the linearly independent auxiliary 
solutions to Eq. (2.6) can be found in the text by ErdeIyi. 24 
The required specialization of those techniques with a few 
necessary modifications was discussed in Ref. 3. Defining 
the two independent solutions associated with the interval 
.l:"j=[Rj , Rj+ I ] to beYa,j(k,r) with a = ± I (note that the 
angular momentum label has been suppressed), one finds 
that 

Ya.j(k, r) = lj(ak, r){1 + 0 [(kR)-xj
]) , (2.15a) 

dy .(k r) dY(ak r) 
a'~r' = J

dr
' (1+0[(kRj )-xj ]j, (2.15b) 
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uniformly for all r in l:j and k in ii1, where 
M 

lj(k, r) = eikr f a~ (r)k - m , 

with 

m~O 

a6 (r) = I for every j, and 

daim(r) = (21)-1[[/(/+ l)r- 2+ V(r») 
dr 

Xa~ -I (r) - d2a~ -I (r)ldr2] , 

(2.15c) 

(2.15d) 

(2.15e) 

for allj and m;;;. 1. For the power ~ appearing in Eqs. (2.15a) 
and (2.15b) one has Xj = L for j<n - 1 and Xn = Xn + I 

= (7 + 2. For the upper limit of the sum in Eq. (2. 15c) one 
has Mj = L for 0< j<n and Mn + I = [(7] + 1, where [(7] is 
the greatest integer <(7. The arbitrary constants of integra­
tion that arise when one integrates Eq. (2. 15e), to obtain 
aim (r) were chosen so that 

i
r dan + I(r') 

an + I(r) = dr' _m __ _ 

m 00 dr" 
(2. 16a) 

and r;;;.Rn + I and 1 <m < [(7] + 1, 

1r dan (r') 
a;:'(r) = dr' m , 

R" dr' 
(2. 16b) 

for r in l:n and [(7] + 1 < m <L, and 

a~(Rj+I)=a~+I(Rj+I)' (2. 16c) 

for every m<L ifO<j<n - 1, and also for 1 <m < [(7] + 1 if 
j=n. 

A number of important properties of the a~ (r) can be 
determined from Eq. (2.15e) and the properties of V (r) given 
earlier. J For 0 < j < n, one finds that a~ (r) and all of its de­
rivatives of order <L + 2 - n are continuous throughout 
the open interval (Rj' Rj + I) and are bounded throughout 
the closed interval [Rj ,Rj + I]' The coefficients a~ (r) and all 
of its derivatives of order <L + 2 - n are continuous for all r 
for which Ro <r<R I , and satisfy 

I 
dmaO(r) I 
__ n_ <constr - n .- m , 

dr m 
(2. 17a) 

for Ro <r<R I' For j = nand n + 1, a~ (r) and all of its de­
rivatives of order <~ + 2 - n are continuous in the open 
interval (Rj' RJ+ I) and satisfy 

I dma~(r) I <const[1 +(I_rIR)<T+2-m-n] (2.17b) 
dr m 

for Rj<r<Rj + I' 
Since the two solutionsy ± I,j(k,r) linearly independent 

one can writeJ;( ± k,r) as a linear combination of the two: 

+1 
J;(-{Jk,r)= IA~,p(k)Ya,j(k,r), (J=±I, (2,18a) 

a=l 

with 

A j (k) = W [y - a,j(k, r),J;( - (Jk, r)] 
a,p W[Y_a,ik,r),Ya,j(k,r)] , 

where W[J(r), g(r)] is the Wronskian defined by 

W[f(r),g(r)] =f(r) dg(r) -g(r) df(r) , 
dr dr 
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Since the W ronskians are independent of r, they may be 
evaluated at any convenient point. Clearly the Wronskians 
involvingYa.ik, r) will be evaluated with r in ~j' where the 
asymptotic expansions given by Eqs. (2.15)-(2.17) are valid. 
To begin the calculation of the coefficients A ~. p(k,r), one 
observes thae I 

(2.19) 

for all r>R, where VCr) = 0, and where w,(kr) is a Riccati­
Hankel function. Using the known analytic form for w,(kr) 
and its derivative,25 one finds that 

A ~.j/ (k) = W [y _ a. n +1 (k, r), w,( - 13kr)] 

x{W[Y_a.n+1 (k,r),Ya.n+1 (k,r)]}-llr=R 

= i' {8 [1 + 0 (k - N -2)] a.+1 

+ 8". _I 0 (k - a-2 e2if3kR)} , (2.20) 

with N = [0"]. Using Eq. (2.18a) with} = n + 1, together 
with its derivative with respect to r and the asymptotic forms 
of Y".n + I (k,r), dYa.n + I (k,r)/ dr and A ~.~ II (k) given by 
Eqs. (2.15a), (2. 15b), and (2.20), respectively, gives us the 
asymptotic form ofJ; ( - 13k,r) and its derivative with respect 
to r for the range r = Rn + I to R. This enables us to compute 
the asymptotic form of A ~.f3(k) by means ofEq. (2.18) with 
r = Rn + I . Continuing this procedure, one finds the asymp­
totic form of each of the A ~.f3(k) with O<}<n, namely 

A~1.fJ(k)= i'{8a .+ 1[1 + n:f O(k -1',.-2) 
p=}+1 

+ )+1 P~"n+1 O(k -1',.-l'q-4exp[2i13k(Rq -Rp )])] 

(2.21) 

wherelln +1 = [0"] andllj = min [mj , L -2] for}<n. Eqs. 
(2.18a), (2.21), and (2.15) yield the asymptotic forms for 
J;( ± k,r) and dJ;( ± k,r)/dr for all points from Ro to R. 
Using the same expansion functions, one finds3 

+1 

ifJ/(k, r) = L BaJ(k )YaJ(k, r) (2.22) 
Cl= -1 

Ba/k) = Wak)-'-I (1 + K,(ak) + O(k -lInk) 

+ t 0 (k -I'q -2 exp [ -2iak Rq ])}, (2.23a) 
q=O 

where 

{
f (2ik)i(Y-2)b(l,j) for 1 <r<2, 

K,(k)= )=1 

o for y<1 , 

(2.23b) 

and m = [(2 - y) - 1]. The sum over q is absent in the} = 0 
case. In Ref. 3 it was also shown that 

J;( + k) 

n+1 

+O(k -lInk)] L A)(±iz)-a'exp(±i{3A, 
) - 1 

(2.24a) 

as k--+ 00 in fiJ, where z = 2kR, 
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for} = 1, n, 

13n+l =l,an+l =0"+2,An+ 1 =(-I)'voR 2r(0"+1), 
(2.24c) 

and 

(2.24d) 

Since we now have the asymptotic forms of ifJ/(k,r), 
J;( - k,r), and/, ( - k) as k--+oo with Imk < 0, we are in a 
position to determine a bound on the portion of the integral 
on the left-hand side of Eq. (2.13) that arises from the seg­
ment of em for which Imk ' < O. The approach we shall take 
is identical to that employed in Appendix C of Ref. 2. One 
first defines Fj(k) with} = 1,4 by 

FI (k) = (a dr r dr' Y(r, r'), 
JR tI JR" 

l
Ro La 

F2 (k) = dr dr' Y(r, r') , 
o Ru 

(2.25) 

La iR" F3 (k) = dr dr' Y(r, r') , 
R/ j 0 

(Ro (Ro 
F 4 (k)=Jo drJo dr'Y(r,r'), 

with 

Y(r, r') = (- 1)/ + Ik /X~ (r)ifJ/(k, r <)ft( - k, r» 

XX2(r')/J;( - k) (2.26) 

andRo = 100(1 + 1I2)2/lk I. 
One then has 

4 

J I2 (k, a) = L Fi(k). 
i= I 

To obtain bounds on the interior integrals in which r and, or 
r' run from 0 to R o ' one replaces the functions/, ( - k,r) and 
ifJ/(k,r) that appear in the integrand by the bounds on their 
absolute magnitude given by Newton,2l and also replaces 
X; (r) an X 2 (r') by the following bounds on their absolute 
magnitudes 

Ixk)1 < constr' i; for i = 1 and 2, 

where 

(2.27a) 

(2.27b) 

This bound follows immediately from the properties of Xi (r) 
given earlier. To obtain a bound on the magnitude of the 
exterior integrals one first divides these integrals into subin­
tegrals over the subsegments ~j' then replaces ifJ,(k,r) and 
J;( - k,r) by their asymptotic forms that are valid in~). The 
integrand will then be a sum of terms, each proportional to a 
function of the form eif3kr F (r), where {3 = 0, ± 1, or ± 2, 
andF (r) is a bounded function of rwhich is independent of k. 
If {3 =1= 0, one integrates by parts at least one time. If f3 = 0 one 
has a suitable expression as it stands. One next sums over} to 
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obtain the asymptotic form of the exterior integrals and then 
uses the properties of the functions X;(r) and a~ (r) to deter­
mine a bound on the absolute magnitudes of the external 
integrals. After a considerable amount of algebra one finds 
that there exist positive constants C and Dp'p = 1 to n + 1, 
such that for sufficiently large Ik I 

II12(k )11.t;( - k)1 ,;;;C Ik I-I [e2lvlalkR 1-2 +1 

+ i Dpe21vlR IkR 1-l"p-7 
p=1 

+ Dn +1 e21vlR IkR 1- u-2 ] , (2.28) 

where v = Imk < O. In Ref. 3 the location of those zeros of 
.t;( - k) for which Ik I~oo were determined. Such zeros lie 
in either the third or fourth quadrant of the k plane, and are 
given by 

k~ = (2R) -1 [tjM - iA)nlM 1+ 0(1)] , 

t j = 21T( /3s(}) - /3N(j _ 1) - 1 , 

(2.29a) 

(2.29b) 

where the index M takes on all integral values satisfying 
1M I >Nc,j, where Nc,j is some large positive integer, and the 
index} runs from 1 to 7';;;n + 1. As before, n is the total 
number of discontinuities of d LV(r)/dr. The constants Aj 
are defined by 

aN(j) - aN(j _ I) 

/3S(J) - /3N(j - 1) , 

(2.30) 

for} = 1 to 7, where N (0)=0 and N (J) equals the value of m 
for which the minimum occurs. Note that Eq. (2.30) implies 
that N (J) increases with) and that N (7) = n + 1. It shall be 
assumed that Eq. (2.30) has unique solutions for each). (Any 
degeneracies can be removed by infinitesimal changes in the 
parameters /3m.) It then follows that Aj <Aj + 1 for each} 
from 1 to 7 - 1. The two parameters a o and /30' which are 
required in Eq. (2.30) when} = 1, are defined by 

a o =/30 = o. (2.31) 

Equation (2.29) is an asymptotic expansion in terms of the 
index M. The remainder term 0 (1) is of zero order in M. It 
should be noted that Eq. (2.29) involves a double index label 
for the zeros of.t;( - k), while the ordering of zeros pre­
viously introduced involves only one index. Clearly the 
transformation from a single label to a double label corre­
sponds to a reordering of the zeros. It will prove convenient 
to retain the single label form when establishing the condi­
tions for convergence of the Mittag-Leffler expansion of 
112 (k,a). Once the convergence has been established, further 
information will be obtained by reordering the resulting infi­
nite sum. The validity of this procedure will be established 
when it is required. From Eq. (2.29) one sees that a contour 
plot of the function I.t; ( - k ) I - 1 in the right-half k plane 
would look like a set of 7 mountain ranges, with each range 
labelled by a fixed value of}, with roughly equal spacing 
between mountains in a given range. Since a zero of.t;( - k) 
corresponds to an infinity of I .t; ( - k ) I - I, the altitudes of 
these "mountains" are infinity high. However, the contour 
C m passes between the poles and it can be deformed so that 
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for each values of 1m k the real value is chosen so that 
I .t; ( - k ) I - I is minimized. If this is done it follows that 

I.t;( - k)I-I,;;;C Ik I aN (])exp( - 2/3N(]) IvIR), (2.32) 

for k on Cjm' where C~ is that portion ofCm for which 
Re k>O and 

- Aj+ Iln(2lk IR ),;;;2R Imk,;;; - A)n(2Ik IR), 

with} = 0 to 7 - 1. For the segment C;;. defined to be that 
part of Cm for which Re k > 0 and Imk < - (2R ) - IAr 
Xln(2lk IR), one has 

I.t;( - k)1 -- I,;;;C Ik 12 + U exp( - 21v1R) . (2.33) 

Using the symmetries ofj;( - k ),.t;( - k,r), and 
¢l/( - k,r) given in Ref. 21, one finds that 

III2 (k, a)/k 1= III2 ( - k *, a)/( - k *)1, 
which implies that the contribution to the integral on the 
right-hand side of Eq. (2.13) made by the segment of Cm 

lying in the third quadrant exactly equals the contribution 
from the segment in the fourth quadrant. Hence, one only 
needs to evaluate the latter contribution. Combining Eqs. 
(2.13), (2.28), (2.32), and (2.33), and carrying out the result­
ing integrals, one finds that 

I
i 112 (k,', a)dk' I 
rem k-k 

,;;;Cp;;;l+ Tfl cj p:""+).(aIR-fl",,)+4/).=A,,, 

}=o a-RN(j) A=A, 
C' a- Ai l - aIR)-2 + Pm , (2.34) 

provided that a <R, where ,.1,0 ,=,0 andpm is the radius of the 
circular path Cm • The first term on the right-hand side ofEq. 
(2.34) is a bound on the contribution of the integral over the 
portion ofCm that lies in the upper halfk ' plane, the sum on} 
is a bound on the integral over the segments for which Imk 
satisfies 

- (2R ) - IArlnpm ,;;;Imk' < 0, 

and the last term is a bound on the integral over the line 
segmentforwhichlmk' < - (2R )-IArlnpm. Sincepm~oo 
as m- 00 the contour integral will vanish as m_ 00 provided 
that 

aiR < 1, 

aiR </3~ = 1 - (0- - 2)/Ar , 

(2.35a) 

(2.35b) 

a/R</3'j=/3N(j) -(aNi}) -4)/Aj' if aN(}) >4 , (2.35c) 

a/R</3'j=/3N(j) + (4-as (})/Aj I I' if a N(}),;;;4. 
(2.35d) 

Employing the definition of Aj given by Eq. (2.30) and the 
fact that Aj' /3 N (j)' and a", (j) are all positive quantities that 
increase with), one finds that 

/3'j>/3cj 

for all}, where J is the value ofj for which laN(j) - 41 is 
minimized as} runs from 0--7, i.e., 

laN( 1) - 41 = min laNe}) - 41 . (2.36) 
O',j"T 

Hence the Mittag-Leffler series 112 (k,a) converges if Eq. 

W,J. Romo 315 



                                                                                                                                    

(2.35a) is satisfied and also 

aiR <(3~ (2.37) 

with J defined by Eq. (2.36) and(3j defined by Eqs. (2.35b)­
(2.35d). 

To help clarify the situation we shall give the conver­
gence conditions for three special cases: 

(i) If u<2, thenaN (]) < 4 for allj<7andJ = 7. Equation 
(2.35b) then yields (3 ~;;;, I and the Mittag-Leffler series con­
verges for all a for which Eq. (2.35a) is satisfied. 

(ii) If aN(I) > 4, then either J = 0 or 1. In either case 
(3~ = 4/AI and the series converges for all a for which 
a <4R N (I)la N (I)' 

(iii) If there exists aj = J for which aN(J) = 4, which 
implies that V (r) has a discontinuity in its second derivative 
at R N (J)' then (3 ~ = (3 N (J) and the series converges for all a 
for which a <RN(J)' 

If all of the derivatives of V (r) up to order L are continu­
ous for 0 < r < R, i.e., the n = 0 case, then the potential will 
be a member of the same class off unctions examined in Ref. 
2. For u<2, case (i) above applies, which agrees with the 
result obtained in Ref. 2. For u> 2, since n = 0 then 7 = I 
and aN(T) = a N (1) = u +2. Thus (ii) holds and the series 
converges if a < 4R (2 + u) -\ . This also agrees with the re­
sult of Ref. 2 in those for which both X \ (a) and Xl (a) are 
non vanishing. The analysis of Ref. 2 shows that the radius of 
convergence is extended if either one or both X \ and X 2 van­
ish at a. This refinement has been ignored in the present 
derivation. The additional convergence condition 
a <(3 + a)2R 1(2 + u) forj = 1,2 that appeared in Ref. 2 
has been eliminated in the present paper by improving the 
bound on III2(k,a)l. 

In concluding this section, we would like to point out 
that although we have derived the convergence condition for 
a particular orbital angular momentum I, the covnergence 
conditions given by Eqs. (2.35a)-(2.35d) or equivalently by 
Eqs. (2.35a), (2.36), and (2.37) are the same for every I. 

3. DETAILED STUDY OF THE CONVERGENCE OF THE 
MITTAG-LEFFLER SERIES 

When Eqs. (2.35a) and (2.37) are satisfied the Mittag­
Leffler expansion for 112 (k,a) converges, so that from Eq. 
(2.12) one has 

~ &fln(a) ~ (&fln(a) &fl_n(a») 
112(k,a)= ~ -- + ~ -- + . 

" ~ I k - k" ,,~N j- I k - kn k - k _ n 
(3.1) 

From the definition of 112 (k,a), Eq. (2.4), and the relation­
ship of ¢II (k,r) and.ft( - k,r) at a zero of.ft( - k), one finds 
that2 

where 

(XI lPa l<Pn > (<P -nlPaIX2> 

2kn 

(x,IP"I<Pn) = (<PnIPaIX;)* = fuR drx;(r)<Pn(r), 
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(3.2a) 

(3.2b) 

<P (r)= 2k '+I[il'(k )dI' (-k)/dk I ]-112 n n J I n J I k ~ k" 

X ¢I,(k" , r) , 
(3.2c) 

and 

(3.2d) 

Equations (3.2a)-(3.2c) hold for both positive and negative 
values of n. The wavefunction <P n (r) is the usual normalized 
resonant state wavefunction2.1o.11 corresponding to the pole 
at k n • 

To obtain further insight into the convergence of the 
Mittag-Leffler expansion and to gain information that will 
be essential when we examine the completeness properties of 
the resonance states, we shall determine the asymptotic form 
of the residues &fl ± n (a) as n~ 00. To determine these as­
ymptotic forms one must first construct the asymptotic form 
of the integral 

J(k, a) = f dr x(r)¢I,(k, r) (3.3) 

in thelimitthat Ik I~oo with Imk < 0, where X (r)can be any 
one of the functions X I (r), X 2 (r), X; (r), and X; (r). Employ­
ing Eqs. (3.2d), (2.22), (2. 15a), and (2.I5c), one finds that 
with r in ~j [Rj' Rj + I ], the integrand of Eq. (3.3) 
becomes26 

+1 

x(r)¢I,(k, r) = L Ba.j(k )x(r)eiakr 
a= -1 

X L%o dm(r)(ak)-m + 0 [(kRj)-Xj
]}. 

(3.4) 

From the assumed properties of X \ (r) and X 2 (r) and the defi­
nition of X (r) it follows that d Lx(r)1 d~ is piecewise continu­
ous and bounded for r in (O,R ). Let us subdivide the segments 
~j into subsegments [Rj,fJ, Rj,fJ + I ] with (3 ranging from 0 to 
(3 ()), where Rj,o=Rj , Rj ,f3(J)+1 Rj+l and the R).{J with 
0<(3<(3 ()) are the complete set of discontinuities of 
d Lx(r)1 dr in ~j' From the properties of the expansion coef­
ficients a;" (r) given in Sec. 2 and in Ref. 3, it then follows that 
the function Fjm = x(r)a~ (r) is dm times differentiable 
throughout [Rj ,f3' Rj,fJ +1 ], where 

d m = min[L, L + 2 - m] , (3.5) 

and that 

IFj;;:(r) I <const for l<j<n, 

where 

(3,6) 

IF~'2(r)l<constxr"s-m-v, (3.7) 

with S given by Eq. (2.27b). Hence the mth term in the inte­
gral can be evaluated by repeated integration by parts. One 
obtains 

JR", , , dr x*(r)¢I,(k, r) 
Rf.{~ 

+ I { M 

= a~ I Bajk) m~o (iak)-m 
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+ (iak) - dm L~:,fJ+l dr eiakrF;!m)(r)) 

+ 0 [(kRj ) - Xj I L~:+1 dr eiakrX{r) I]} . (3.8) 

Bounds on the two integrals on the right-hand side of Eq. 
(3.8) can be constructed by using Eqs. (2.27a), (3.6), and 
(3.7). For the integral from r = 0 to Ro' X (r) is replaced by a 
Born series expansion as was done in evaluating the corre­
sponding "internal" integrals in Refs. 2 and 3. The first term 
of the resulting series expansion can easily be evaluated and 
it is seen that the leading Ro dependent terms cancel against 
the leading Ro dependent terms of the external integral. The 
higher order terms are not as easily evaluated but using the 
techniques of Ref. 3 one finds that 

["drx(r)¢I(k,r) = k -1-2-s [jto Cj k
j
(Y-2) 

+ 0 I k I -I In I k I) ] 
+ (Ro dependent terms), (3.9) 

where m is the greatest integer «2 - y) -I. 
If one defines J and b as the values ofj andp for which 

R f3 <a <R. f3 I' then the external integral consists of a sum 
b b + . 

over all those subintegrals given by the left-hand Side ofEq. 
(3.8) for whichj and P satisfy the constraints Rj.f3 <RJ,b' plus 
an additional integral of the same form, but with RJ,b replac­
ing Rj,f3 and a replacing Rj,f3 +1 • Adding the interior i.ntegral 
to the exterior integral, using properties of the amphtudes 
Ba,j{k) given in Ref. 3, gives 

f: dr¢l{k, r)x{k) = a~-I (Ba,o{k){ eiakaX(a) (iak)-I 

- lim{iak) -I L' exp(iakRj,f3) 
E--o j,f3 

X [x(Rj,f3 + €) - X(Rj,f3 - €)] } 

+ (iak)S-1 Ba,o(k) 

x[1+0Ikl- I
))), (3,1O) 

where Ba,o{k) was defined in Eq. (2.23) and Ba, o{k) also 
satisfies an equation of the form (2.23), but with b (/,j) re­
placed by a new set of constants b (I, j). The prime on the sum 
over j and P indicates that the sum is restricted to those 
values ofj andp for which Rj,f3<RJ,b' We note that theRo 
dependence of the interior integral cancels against the Ro 
dependence of the exterior integral, as it clearly must since 
Ro is an arbitrary matching point and both V (r) and X (r) are 
assumed to have derivatives of all order at Ro. 

To complete the evaluation of the residues one needs 
the asymptotic forms ofJ;(k) and dJ;( - k )/dk and also 
the asymptotic pole positions. The asymptotic form ofJ;(k) 
is given by Eq. (2.24a), the asymptotic form of 
dJ;( - k )/dk evaluated at a zero ofJ;( - k) is derived in 
Appendix A and given by Eq. (A6), and finally, the asymp­
totic form for the pole positions is given by Eq. (2.29). Substi­
tuting these asymptotic expressions into the equation for the 
residue of /]2 (k,a) at k = k~ and collecting terms yields 
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Yl~ (a) (k - k~) - 1 = LC~, ,,(a) (i;jMr!M 

" 
Xexp(i¢~{a)M) 

X[I+O{M-1lnIMI)1 (3.11) 

for every fixed value ofk as 1M 1-00, where the sum onKhas 
a finite number of terms and the amplitudes C-:X, Aa), the 
powers 1T!(a) and the phase factors ¢~(a) are each indepen­
dent of M, The indices a = + 1 and a = - 1 correspond to 
M> 0 and M < 0, respectively. The derivation also reveals 
that ICj + I,K (a) I = ICj _ I,K{a)1 for every K, and that 
cj + 1 K{a) = Ci_ I,Aa) for every K for which both Ik and mi,,, 

vanish, A more detailed expression for these coefficients is 
given in Appendix B. 

Before we examine Eq. (3,11) in more detail, we address 
ourselves to a complication touched upon in the previous 
section, the terms of the Mittag-Leffler series were labelled 
by a single index n, which we associated with the pole kn' 
while our asymptotic expression for the pole positions, and 
hence for the residue poles, has two labelsj, which labels the 
family, and M, which labels the various members of the fam­
ily. It would be extremely difficult and of doubtful value to 
identify each pole k <., with a pole k n • So we shall use a differ­
ent approach to investigate the convergence properties of the 
Mittag-Leffler series. Suppose, for the sake of argument, 
that the pair of infinite sums 

S\_I= L YlJ'>f(k-k~)-1 and 
M>O 

Sj '" aJj (k k j ) -- 1 
-I = L:7[ -M - -M , (3.12) 

M>O 

converge for each and every j family. Then by the Cauchy 
condition,27 for every € > 0 there exists an NE such that 

I
i Ylj ± M I < ~, 
M~k k - kJ±M 21' 

for every j as long as N > K > N E , What does this imply about 
the convergence of the Mittag-Leffler series? To answer this 
question we consider a partial sum for the Mittag-Leffler 
series and note that it can be rewritten as 

i (Ylm + Yl -m ) 

m ~ K k - km k - k _ m 

t (± Yl~ j + ± ~i_jm). 
j~1 m~K,k-km m=K,k k_m 

The reordering of terms is valid since we are dealing with 
finite sums. By the nature of the mapping from k m to k~ it 
follows that if one takes K sufficiently large, say K> ME , 
then K j > NE for every j, thus to each € > 0 there exists an ME 
such that if N > K > NE then 

Yl_m )1 
+ k-k_

m 

Hence, the Mittag-Leffler expansion converges if both sj + 1 

and S j _ 1 converge for every j. One can go one step further. If 
one defines infinite sums 
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S~,K(a)= L C~'K(a)(ia;Mr'·(a)exp[ia¢~(a)M],(3.13) 
M>O 

if follows that S~ will converge if S~'K converges for each 
value K in the sum on the right-hand side ofEq, (3,11), Thus, 
if SJ + I,K and SJ _ I,K converge for every j and K, the Mittag­
Leffler expansion will converge. The converse, however, is 
not true, that is convergence of the Mittag-Leffler series 
does not imply convergence of S ~,K for every j and K, We 
shall see examples of this later on, but for the moment, let us 
determine the convergence conditions for the series 
SJ ± I,K(a), We begin by examining Eq. (3,11) in greater 
detail. 

Each of the phases ¢~(a) and each of the powers 
1T~(a) has the general form 

(3,14a) 

and 
n + I 

1T~(a) = AJX~ + aN{j) - L "n~, i(a l - a N(}) 
i= I 
2 

-l~ (2-y)+ L m!.iSi -4, (3.14b) 
i= 1 

with 
n+1 

X~ =fJ
K 

-fJN(j) + L "niK,i(fJi -fJN(}) ' (3,14c) 
i= 1 

where the double prime on the sums means that i = N (J) and 
i = N (j -1) are excluded from the sums, the coefficient n~,i 
are nonnegative integers, l~ is an integer ranging from 0 to 
m, with m the greatest integer < (2 - y) -I , and m1K ,i = 0 or 
1. The quantities AJ, ;J' fJi' fJN(}) , ai' a N(}» y, and Si where 
defined in Sec. 2. 

The various terms of the sum over K in Eq, (3.11) fall 
into three basic classes which we list below: 

(a) In this class ~,I = ~,2 = 0 andfJK times R can be 
anyone of the following; a, a ± r;" r~ ±~, - a, - a ± r:" 
- r! ± r:" or 0, where r:, is the position of the pth disconti­

nuity of Xi (r). The i can be either 1 or 2 in r;" but p and q are 
restricted to values for which r;, <a and ~ <a. 

(b) In this class either ~.I = 1 and ~,2 = 0 or 
miK.I = 0 and ~.2 = 1, whilefJKR may be either ± a/2 or 
± r'p /2, where again i may be either 1 or 2, but p is restricted 

to values for which r'p <a. IffJKR = ± r;,12 then ~,I = O. 
(c) In this class miK • J = ~,2 = 1 and fJ K = O. If one de­

fines P (i,j.). ) by 

P(i,j.).)=A(fJi -fJN{j)-ai +aN(}) , 

as was done in Ref. 3, then 
n+l 

1T~(a)= AJfJK+ P(O,j.).) + L "niK.iP(i,j.).) 
i= 1 

2 

-/~(2-y)+ L ~.it -4. 
i= 1 

(3.15) 

(3.16) 

From the theorem established in Sec. 3 of Ref. 3 it follows 
thatP (i,j.).) < o for every iin the sum whileP(O,j.).)<Ofor 
every j (the quality only holds for j = 1). Since /K(2 - y»O 

and Si < 1, one then finds that 
2 

1T!(a) - AJfJK < 1 L mK. i - 4< - 3 , (3.17) 
i= I 
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for every K. If in addition fJ K <0, then the infinite series 
S~. K (a) will be absolutely convergent. Therefore to complete 
our study of constraints on a which guarantee the conver­
gence of S~, (a), we need only examine those series S}a. K(a) 

associated with values of fJ K > O. This eliminates from fur­
ther consideration all values of K associated with terms in 
class (c) and many values of K associated with terms in 
classes (a) and (b) as well. 

For those series S~,Aa) that survive after those for 
which fJ K <0 have been eliminated, a necessary condition for 
convergence28 is 1T~ (a) < O. From Eq. (3.15) and the proper­
ties of the P(i,j, A), it follows that the maximum value of 
1T~(a) for K in class (a), occurs when lk = nK.i = 0 for every i 
in the sum and fJ' = a/ R. Calling this term the K = 1 term, 
one has 

1T{(a) = A/a/R - fJN(}) + aNt}) - 4. 

Now 1T{ (a) < 0 implies that a must satisfy 

a/R<fJs(j) -(as (}) -4)/AJ' 

(3.18) 

(3.19) 

or else S~, I (a) will diverge. If Eq. (3.19) is satisfied and the 
phase ¢~ (a) is not an integral multiple of 21T, the series will 
converge by the Dirichlet test. 29 If, for the moment, we as­
sume that none of the phases ¢~(a) is an integral multiple of 
21T, then S~'.K (a) will converge for every K belonging to class 
(a), since 1T~(a) < 1T{ (a) < 0 for every K=/-1 in class (a). 

For K in class (b), one sees that the maximum power is 

1T~(a) = AJ [a/(2R) - fJS(})] + a s (}) + S - 4, (3.20) 

with S as defined in Eq. (2.27b). If a satisfies Eq. (3.19), then 
by Eqs. (2.31), (3.15), and (3.18), Eq. (3.20) becomes 

1T!(a) = [1T{(a) +P(O,j.).)]12 +S-2< -~, 
so everyone of the series S ~'.K (a) with K in class (b) is abso­
lutely convergent. Thus, if a satisfies Eq. (3.19) and ¢ ~ (a) 
=/-0 (mod 21T) [i.e., ¢~(a) does not equal an integral multiple 
of21T] for every K in class (a) for which - 1 < 1T! (a) < 0, then 
S~, (a) will also converge. It may seem that we have neglected 
terms associated with the factor 0 (M lIn 1M I) on the 
right-hand side of Eq. (3.11), but these terms are of order 
o (M - I·· ;r',(a)lnIM I) = o(M - I), so they too give rise to an 
absolutely convergent sum when Eq. (3.19) is satisfied. 

If a/ R < fJ ~, with fJ ~ as defined in Sec. 2, then not only 
is Eq. (3.19) satisfied for every j, but the Mittag-Leffler series 
converges. Hence, one gets convergence even when one or 
more of the phases ¢J(a) equals 0 (mod 21T). In Appendix B it 
is shown that if ¢~(a) = 0 (mod 21T) and - 1 <1T!(a) < 0, 
then either the coefficient C~, . .(a) vanishes or there exists a 
term in a neighboring family j' = j ± 1 whose phase also 
equals 0 (mod 21T) and whose power equals 1T! (a). Taking the 
ratio of the two terms one obtains 

(3.21) 

But the right-hand side ofEq. (3.21) is, apart from sign,just 
the ratio of the spacing between poles of the j family to the 
spacing between poles ofthej' family. Therefore, if one com­
bines the terms of the series S ~'.K and S ~~.K' to form a new 
series whose terms are ordered according to the magnitude 

W.J. Romo 318 



                                                                                                                                    

of the poles, as is done in ordering terms of the Mittag­
Leffler series, then the new series converges. 

Now that we have examined the Mittag-Leffler series 
in some detail we are in a position to consider the limiting 
process that leads to the "completeness" series. 

4o COMPLETENESS 

We shall begin this section by determining the asymp­
totic form of 112 (k,a) as k-oo in '1l, whre '1l is a domain in 
the complex k plane, containing all points for which 
0 0 <.argk<:rr - 0 0 with 0<00 <1T/2, and Ik I>X, where X 
is sufficiently large so that all bound state poles have 
Ikj 1 <x. For the class of potentials being considered, X is 
finite. From Eqs. (2.4), (2.5), and (2.26) it can be seen that 

4 

112(k, a) = L Fj(k) , (4.1) 
;=1 

where the Fj(k) are defined by Eq. (2.25). Taking Ro 
= [In(lk IR)] -I inEq. (2.25) and employing the asymptot­

ic form of G l + )(k; r, r) given by Newton,21 i.e., 

G ~ + )(k; r, r') = ( - 1)1 + Ik It/l/(k, r <) 

X h( - k, r> )I h( - k) 
= (2ik) - I [ejk(r > - r,) _ ( _ 1)lejk(r+ r') 

+0(e-1vl(r-r<)], (4.2) 

for all rand r'>Ro, where v = Imk, one can evaluate the 
asymptotic form of FI (k). Using the bounds on 
IG ~ + )(k'; r; r')1 given by Newton and the bounds on IXj(r)1 
given by Eq. (2.27a), one can place bounds on the contribu­
tions of F2 (k), F3 (k), and F4 (k) to 112 (k,a). Combining 
these results, one finds that 

112 (k, a) = k - 2J: dr XI 0(r)X2 (r) (l + 0(1», (4.3) 

as k- 00 in '1l. Therefore, 

lim k m/12 (k, a) = 8m. 2 (XI IPa IX2) , 
k-+oo 

for m = 1 and 2 and k in '1l, where 

(xllPa IX2 )= J: dr XI 0(r)X2(r). 

(4.4a) 

(4.4b) 

Next, we apply the same limiting process to the pole 
expansion of 112 (k,a), i.e., we consider 

(k in /,') 

(4.5) 

Suppose, for the sake of argument, that one can interchange 
the order of the limit and the sum. For the m = 1 case one 
would obtain 

N 00 

L ~n(a)+ L [~n(a)+~_n(a)]=O. (4.6) 
n=O n=N+1 

Continuing on with the supposition, if one multiplies Eq. 
(4.6) by k and Eq. (3.1) by k 2, adds the resulting equations 
and combines terms to form a single infinite sum, he will 
obtain 
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N k~(a) 
k 21 (k a) = '\' n n 

12' ~ 1- k -Ik 
n ~ 1 n 

Assuming further, that the ordering of the limit and the sum 
can once again be interchanged, Eq. (4.4) then gives us 

N 

(XI IPa IXz) = L kn~ n(a) 
n=) 

+ ! [kn~n(a)+k_n~_n(a)]. 
n~N+ I 

(4.8) 

Substituting Eqs. (3.2a) and (3.2b) into Eq. (4.8) gives us the 
desired completeness relationship for the bound and reso­
nance states. 

It is now our task to determine the range of values of a 
for which the assumed interchanges are valid. Since the deri­
vation will involve a number of steps, we begin with a brief 
outline of the procedure. 

(i) They asymptotic form of the terms of the series is 
established. 

(ii) The range of a for which the series is uniformly 
convergent in the domain '1l is determined. 

(iii) The behavior of the terms of the series as k-oo in 
'1l is examined. 

(iv) Finally, by combining the results of steps (ii) and 
(iii) it is shown that one can interchange the order of the sum 
and limit for any a for which the series is uniformly conver­
gent in '1l. 

Step (i) is easily accomplished. The two series of con­
cern are 

'" (k)m - I ~ (a) 
s(m)(k,a) I n _In 

n ~o 1 - k kn 

+ ! (knC-I~n(a) + (k_n~m-~~_n(a») (4.9) 
n ~ N + 11k k n 1 k k _ n 

with m = 1 and 2. S(I)(k,a) corresponds to the series ofEq. 
(4.5), and S(2)(k,a) corresponds to the series ofEq. (4.7). 
From Eqs. (3.11) and (2.29) it is seen that the asymptotic 
form of the terms of s(m)(k,a) expressed in the (jM) repre­
sentation are 

(kim)m - I~~(a) (ki _ m)m~. I,%li _ M(a) 
,+ I ' 1 - k <~ IklM 1 - k - k J _ M 

+1 

L L ,r#':::/.M(k, a) , (4. lOa) 
a = - I K 

with 

oN",·i (k a) = D m.i(a) (ial-M)n',.(a) + mexp(iat/l i (a)M) a .. K,M, a,1i. ~J K 

x(l-k-Ik~m)-I 

X[1 +O(M~llnM)], (4. lOb) 

D'::,',/(a) = _i-mC~.Aa). (4.lOc) 

As a preliminary to step (ii) we shall derive bounds on 
11 - k - I k ~ I - I and 1(1 - k - I k ~ ) ~ I 
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- (1 - k - ISjM) - 'I for allj, all k in ~ and every M for 
which 1M I>Mc>1. Let t/! = arg(k/ki",), then 

11 - k .. k~ 12 = lei~' - IkjM/k 112 

= (cost/! - Ik-;,,/k 1)2 + sin2t/!>sin20o , 

therefore 

11 - k .. lk~l- I«sineo)-I, (4.11 ) 

for every j, every k in ~, and every 1M I >Mc. To obtain the 
second the second inequality, we first note from Eqs. (2.29) 
and (4.1 Od) that 

(1-k -lk~)-I-(1-k -ISjM)-1 

= -i(l-k -lkjm)-I[A)nIMI +0(1)] 

X(k-sjM)-1 

while 

Ik - SjM 12 = Ilk le ill
- SjM 12 

therefore 

= (Ik I - SjM COSO)2 + c;jM sinO)2 

>C;jM sinOof , 

1(1 - k·1k j
M) -I - (1- k -lsjM)-11 

<constX 1M 1-llnlM I, 

for every j<r, k in ~ and 1M I >Mc> 1. 

(4.12) 

The approach we shall take in determining the condi­
tion for uniform convergence of the series S (m)(k,a), will be 
similar to that used in determining the condition for conver­
gence of the Mittag-Leffler series in Sec. 3, we shall reorder 
the terms of the series, writing S (m)(k,a) as a sum of a finite 
number of subseries, each subseries consisting of all terms of 
s(m)(k,a) that have the same value ofj,K, and a. A straight­
forward generalization of the argument presented in Sec. 3, 
then shows that S (m)(k,a) will be uniformly convergent in ~ 
if each of the subseries is uniformly convergent in ~. From 
Eqs. (4.10) and (4.11) it is seen that a necessary condition for 
the convergence of the subseries };M(d;;'.;/,M) is that 
1T:.(a) + m < O. This inequality will be satisfied for every val­
ue ofj,K, and a and for every k in ~, if 

~ <W(m)-min{/3N(j) +A j -
I [4-aN{J) -m]}.(4.13) 

R j(J.> 1) 

Since a j > 2 for every j> 1, it follows that the minimum is 
achieved atj = 1 if m>2, i.e., 

W(m) = (4 - m)/3N(j)/aN{J) ' for m = 2 and 3. (4.14) 

Lt us now asume that a/ R </3 C(m) - Eo, where Eo is an 
arbitrary small positive number, and let us define 

= D ;;'./(a) (iaSjMr~(a) + mexp [ia¢~(a)M ] 
X(I-k- 1spM)-I, (4. 15a) 

'G';7,;/'M(k, a) = d;;'';/'M(k, a) - f!ij:';!.M(k, a). (4. 15b) 

It then follows from Eqs. (4.10), (4.12), and (4.15) that 

I '{;:';!.M(k, a)1 < CM - 1·· 2<"lnM < CM - 1 - <", (4.16) 

for every j,K,a, and for every k in ~. (In deriving Eq. (4.16) 
we have also used the fact that Ai >2 for every j> 1.) Accord-
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ing to Eq. (4.16) each of the series };M('{;:';!.M) is uniformly 
and absolutely convergent in ~. Hence, uniform conver­
gence of S (m)(k,a) will follow if one can show that each of the 
sub series };M (f!ij :';/'M) is uniformly convergent in ~. For 
conveneince we shall refer to these sereis as f!ij series. 

The key for the analysis of the f!ij series is provided by 
the theorem of Appendix C. To apply the theorem one takes 
the quantities aM' z, and p defined in the appendix to be 

aM = D ;;',/(a) (iasjM)n-!.(al+ Mexp[ia¢~(a)M] , 
(4.17a) 

Izl = sJlk I, (4.17b) 

argz = - argk + (a - 1)1T/2, (4.17c) 

and p = I. We again assume that a/ R </3 C(m) - Eo. If we 
further assume that ¢~(a)#O(mod 21T), then the series 
};MaM converges by the Dirichlet test/9 and then the theo­
rem of Appendix C tells us that the series}; M [ f!ij :'/M (k,a) ] 
is uniformly convergent for all k in Y a , where Y + I con­
sists of all points of the k plane for which 00 <argk<21T - 00 , 

and Y .. I consists of all points for which 00 - 1T 
<argk<1T - 00 , Since the domain ~ is contained in the in­
tersect of Y + 1 and Y _ I we conclude that both of the 
series, i.e., the one with a = + 1 and the one with a = - 1, 
are uniformly convergent in ~. 

If there are no (j,K)for which is ¢~(a) = 0(mod21T) and 
1T~(a» - 1 - m, then each of the f!ij series is uniformly con­
vergent in ~, and it follows from Eq. (4.15b) and the uni­
form and absolute convergence of the '(; series that each of 
the d series is also uniformly convergent in ~. Finally, as 
mentioned earlier, the uniform convergence of each of the d 
series implies the uniform convergence of the entire series 
s(m)(k,a) for k in ~. 

The case in which one of the phases¢~(a) = O(mod 21T) 

and - 1<1T~(a) + m <0, is treated in Appendix B, where it 
is shown that the divergent series that results can be com­
bined with a second divergent f!ij series to form a resultant 
series, made up of terms from the two original series ordered 
according to I k n I, that is uniformly convergent in ~. Thus, 
the series S (m)(k,a) will always be uniformly convergent in :5' 
as long as a/R </3 C(m) - Eo' 

To facilitate the discussion of step (iii), we define a par­
tial sum s}m)(k,a) by 

(4.18) 

where I> N, but is otherwise arbitrary. Since s}m)(k,a) is a 
finite sum one can immediately pass to the limit k- 00 in :5', 
obtaining 

N 

SSm) (00 , a) = L (kn)m - I~n(a) 
n=l 

I + I 

+ L L (kan)m-I~an(a). (4.19) 
n=N+la=-l 

If a/ R < /3 C(m) - Eo; then there exists a constant C such that 
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I(kn)m - l,gf n (a) I <C , (4.20) 

for all n, both positive and negative. Therefore 

Is}m)(k, a) - s}m)(oo, a)1 

= IntI (knl~~nn(a) + n=~+laXI (ka~):~::(a) I 
«2CI)xmax I kn(k-kn)-I I, (4.21) 

n 

where the maximum is taken over all n for which Ikn I <kl . 

Let us now define a neighborhood of infinity in W, call it 
ff1 ... to be the set of all points in W for which 

Ik I > (1 + 6CIIE)lk1 1 , (4.22) 

where E is an arbitrary positive number, then 

Is}m)(k,a) - s}m)( 00, a)1 < E/3 , (4.23) 

for every k inff1.€ as long as aiR </J«m) - Eo. 
We can now proceed to step (iv). The interchange of 

limit and sum we wish to establish can be expressed as 
follows: 

lim s(m)(k, a) = limS}m)(oo, a) = s(m)(oo, a). 
k .oo(k in ~') l~oo 

(4.24) 

The last equality defines s(m)( 00 ,a). From Eqs. (4.6), (4.8), 
and (4.19), one sees that S (1)( 00 ,a) is just the series on the 
left-hand side ofEq. (4.6) and S(2)(00 ,a) is the series on the 
right-hand side ofEq. (4.8). Since the seriesS(m)(k,a) is uni­
formly convergent for every k in W, to every E> 0, there 
exists an integer I such that 

IS~,m)(k, a) - s(m)(k, a)1 <EI3, 

for every k in W, J>I, and aiR </3 C(m) - Eo. Hence 

IS (m)(k, a) - s(m)(oo, a)1 < IS (m)(k, a) - s}m)(k, a)1 

+ Is}m)(k, a) - s}m)(oo, a)1 

+ Is}m)( 00, a) - s(m)( 00, a)1 < E , 

for every k inffl .€ anda</3C(m) - Eo' Therefore, Eq. (4.24) 
is valid whenevera</3C(m) - Eo. 

Since S (I)(k,a) = kIn (k,a), one sees that Eqs. (4.6) and 
(4.7) are valid for every a </3 c(1) - Eo. It then follows that 
S(2)(k,a) = k 2112 (k,a) for every every a </3 c(1) - Eo, and 
that Eq. (4.8) holds for every a </3 C(2) - Eo' Since these are 
the relations we wished to establish we now write them out in 
a more complete form. 

N 

I (xIIPalcPn) (cPnIPaIX2) (2kn)-1 
n=l 

+ ! [(XIIPalcPn) (cP- nIPaIX2) 
n=N+1 2kn 

+ (XI IPa IcP - n) (cPn IPa IX2)] 
2k_ n 

=0, 

for aiR </3C(I), and 

~Ltl (xIIPalcPn) (cPnIPaIX2) 
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(4.25) 

+ ! [(xIIPalcPn) (cP- nIPaIX2) 
n=N +1 

+ (Xl!Pa IcP - n) (cPn IPa IX2)]} = (xllPa IX2) , 
(4.26) 

for every a <2RN(I/aN(I)' 
The class offunctions to which X I (r) and X 2 (r) belong 

has been defined so broadly that any number of complete sets 
offunctions, such as the radial wavefunctions for a harmonic 
oscillator potential, will belong to the class. Hence, Eqs. 
(4.25) and (4.26) will hold for any two square integrable 
functions, and one concludes that JO 

!Ltl PalcPj ) (cPjlPa 

+ j=~+IPa[lcPj) (cP_jl + IcP_ j ) (cPjIJPa}-Pa, 

(4.27) 

for aiR </3 C(2) - Eo, and 

f Pa IcP) (cPj IPa 

j= I 2kj 

~ P [ I cPj ) (cP - j I I cP - j) (cPj I ]p -0 + ~ a + a' 
j = N + I 2kj 2k _ j 

(4.28) 

for aiR </3 C( 1) - Eo' Where the arrows mean that the opera­
tors on the left-hand side of the arrow weakly converge to the 
operator on the right-hand side as n-oo. 

A resonant state expansion of the wavefunction Xi(r) 
can be constructed by the same procedure used to construct 
the series for (X I IPa Ix 2)' One first defines a function Ji (k,r) 
by 

(4.29) 

with r < a. He then multiplies Ji(k,r) by k 2 and takes the 
limit k_ 00 in W, obtaining 

(4.30) 

One next constructs the Mittag-Leffler series for Ji(k,r), 
multiplies the series by k 2 and again lets k- 00 in W. Upon 
equating the two limiting expressions one obtains 

Xi(r) = !Ltl tPj (r) ( cPj IPa IXi) 

+ j=~+1 [cPir)(cP_jIPalx;) +cP_j(r)(cPjIPalx;)J} , 

(4.31) 

which is valid for r + a < 2RN(I)/aN(I)' or equivalently for 
r <RN(I/aN(I)' Note that the radius of convergence of the 
series for Xi (r), Eq. (4.31), is less than half the radius of 
convergence of the series for (Xi IPa IX2)' Eq. (4.26). 

5. COMMENTS AND CONCLUSIONS 

Eqs. (4.26), (4.27), and (4.31) represent the "complete­
ness" properties of the set of bound, virtual, and resonant 
states of the simple quantum mechanical system under con­
sideration. Eq. (4.26), or equivalently, Eq. (4.27) is an ex-
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pression of how completeness applies to matrix elements, 
and Eq. (4.31) is an expression of how completeness applies 
to wavefunctions. The completeness properties of these 
states differs from true completeness in several ways. First, 
resonant state expansions only hold within a finite volume of 
configuration space, this is a property shared with an expan­
sion in terms of R -matrix states. 31 Perhaps this fact is not too 
surprising since, as Seigert pointed out,S resonant state wave­
functions bear some resemblance to Kapur-Peierls wave­
functions,32 and the latter are just a particular choice of R­
matrix wavefunctions. However, unlike the R-matrix case, 
the volume in which the expansion is valid is restricted by the 
physical properties of the system rather than being com­
pletely arbitrary. Furthermore, the bound-virtual-, and reso­
nant-state wavefunctions are neither normalized or ortho­
gonal over the finite region O';;",;;;a. Finally, the convergence 
of the series expansion of the operator Pa is only weakly 
convergent in contrast to strong convergence in the R-ma­
trix case. 

In addition to the completeness relations for the set of 
bound, virtual, and resonant states of the system under 
study, we have determined the convergence conditions of the 
Mittag-Leffler series for 112 (k,a), i.e., for certain matrix ele­
ments of the Green's function. The convergence of the Mit­
tag-Leffler series can be improved by one or more subtrac­
tions, as was pointed out by Gracia-Calderon33 and Bang et 
aU4 A simple analysis based upon the work of Sec. 3, in 
particular Eq. (3.14b), shows that the Mittag-Leffler series 
for 112 (k,a) withp subtractions will be absolutely convergent 
for all a ,;;R, if p > a-I, and that each additional subtrac­
tion will increase the rate of convergence. 

One rather interesting result was obtained in Ref. 33, 
was further dealt with in Ref. 34, and bears mentioning here. 
Since the physical solution of Eq. (2.6) is related to the 
Green's function by 

¢i + )(k, r) = (- IY+ IkG\+)(k; r, R )Iw,( - k, R) 
(5.1 ) 

for all r < R, then a resonant state expansion for ¢i +- )(k, r) 
can immediately be obtained for r < R by substituting the 
Mittag-Leffler series for G i +- )(k; r, r') into the right-hand 
side of Eq. (5.1). Once again the convergence can be im­
proved by including more and more subtractions. 

For potentials with an exponential tail such as Yukawa 
or Woods-Saxon potentials, the Green's function will have 
cuts in the complex k plane in addition to the bound-, virtu­
al-, and resonant-state poles. Thus, one cannot obtain a sim­
ple Mittag-Leffler series for 112 (k,a) when such a potential is 
substituted for the cutoff potentials we have been consider­
ing. Perhaps, a generalized expansion could be obtained, but 
in all likelihood, it would contain an integral term, arising 
from the cuts, as well as the discrete sum over pole states. 
However, it has been argued that if one truncates these po­
tentials at some large radius, the physical consequences will 
be negligible, even though the analytic properties may be 
drastically changed. Such a truncation would yield a poten­
tial falling in the class we have considered, in fact one with 
a = O. To the extent that the physical consequences oftrun­
eating a potential with an exponential tail are small, one can 
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also truncate a cutoff potential for which a> 0 at a radius 
R - c, with c an arbitrarily small positive number, convert­
ing the potential into a physically equivalent potential with 
a = O.For potentials in this restricted but important class, 
one has the following results: 

(i) The Mittag-Leffler series for 112 (k,a) is absolutely 
convergent for each fixed real value of k and a,;;R. 

(ii) The resonant-state expansion for (Xi!Pa IX2) con­
verges for all a < R, and it is absolutely convergent if 
a<R 12. 

(iii) The resonant state expansion for Pa covnerges 
weakly for all a < R. 

(iv) The resonant state expansion for Xi(r) converges 
for all a < R /2. The series is absolutely convergent if 
a <R 14. For a Woods-Saxon potential VCr) = Vol! I 
+ exp[(r - ro)!ao ] 1 that is truncated at r = R with 

R'pro 'pao , the expansions are absolutely convergent up to a 
radius that is well out into the tail of the potential. 

Finally, if one applies the results of Secs. 2 and 3 to 
study the convergence of the pole expansions of the partial 
wave components of the S matrix and fully-off-shell T ma­
trix given by Eqs. (2.45) and (2.43), respectively, of Ref. 2., 
he finds that the series for S,(k) is uniformly and absolutely 
convergent for all real k, and that the series for a, (k;p,q) is 
uniformly and absolutely convergent for all real k, p, and q. 
In both cases these results hold for all potentials that fall in 
the class defined in Sec. 2. 
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APPENDIX A 

The derivation of the asymptotic form of 
df,( - k )Idk is complicated by the fact that one cannot in 
general differentiate an asymptotic expansion. 35 Fortunate­
ly, there is a way of avoiding this difficulty. One begins with 
the integral representation for 1,( - k )21 

1,( - k) = 1 + (- l)'k' iRdr¢i,(k, r)V(r)w,( - kr), (AI) 

where w, (x) is a Riccati-Hankel function. Applying d I dk to 
this equation gives 

dfl(-k) 

dk 
/(j,(-k)-l) 

k 

- ( -1) Ik ( i
R 
dr ¢if (k, r)rV(r)w~ ( - kr) 

l
R d¢i( (k, r) 

+(-l)'e drw(-kr)V(r) , 
a dk 

(A2) 

where w,'(x) = dw,(x)ldx. Since we have already construct­
ed the asymptotic expansion off,( - k) and ¢i,(k,r), and we 
also know theasymptoticforms ofw,( - kr) and w,'( - kr), 
one can immediately evaluate the asymptotic form of the 
first pair of terms on the right-hand side ofEq. (A2). Before 
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the final integral can be evaluated one must construct the 
asymptotic expansion of drP,(k,r)ldk . If one differentiates 
the radial Schrodinger equation for rP,(k,r) with respect to k 
and converts the resulting differential equation into an inte­
gral equation he obtains 

drP,(k, r) k l' (k '),1. (k ') d ' --.:......:..-.-:..- = -2 g,; r, r 'f" ,r r, 
dk 0 

(A3a) 

where 

g,(k; r, r') = (-1) '(2ik)-1 

X [h( - k, r)h(k, r') - h(k, r)h( - k, r')] . 
(A3b) 

Upon replacingh (k,r) andh( - k,r) by their asymptotic ex­
pansions in Eq. (A3b) and substituting the resulting asymp­
totic expansions for g,(k;r,r') along with the asymptotic ex­
pansion of rP,(k,r) into the integral on the right-hand side of 
Eq. (A3a) and integrating, one obtains the desired expansion 
for drP, (k,r)1 dk . As usual the asymptotic expansion changes 
form in each of the segments l:j. Finally, if the asymptotic 
expansion of drP,(k,r)ldk and w,( - kr) are inserted into the 
final integral of Eq. (A2) and the integral is evaluated one 
finds the asymptotic expansion of d h( - k )1 dk, 

dh(-k) 

dk 
n +1 

= 2iR [1 +K,(k)+O(k -lInk)] 2: A/3q(iZ)-aq 

q=1 

xexp(i/3qZ)[I +O(k -I)], (A4) 

where Z = 2kR. 
If k~ is a zero ofh( - k) belonging to thejth family, 

then 
n +1 2: Aq(iZ~)-aqexp(i/3qZ~)=O, (A5) 
q=O 

where Z ~ = 2k~R, a o = /30 = 0 and 

Ao= [1 +K,(k) +O(k Ink)]/[1 +K,( - k) 

+ O(klnk)] . 

Evaluating Eq. (A4) at k = k~ and using Eq. (A5) to elimi­
nate the q = N(j -1) term gives 

dh~~ k) Ibk
iw 

= 2i[RN(;) - RN(j_I) ] [1 +K,(k~) + O(MlnM)] 

X (iZ~) - a""AN(;)exp(if3N(;)Z~) 

(
1 n~ (A IA ) (3q - (3NU-I) 

X + £.. q N(;) 
q=O /3N(;) -/3N(j-l) 

q'f'N(;),N(j+1) 
(A6) 

From a theorem which was established in Ref. 3, it follows 
that each of the terms in the sum over q on the right-hand 
side of Eq. (A6) tends to zero as 1M 1_ 00, while the factor 

(iZ~) - a"j'exp(i{3N(;)Z~) tends to unity as 1M 1--00 if 
j = 1, or it tends to infinity as 1M 1--00 ifj> 1. 
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APPENDIXB 

In this Appendix we shall investigate the convergence 
properties of the Mittag-Leffler series and of the series 
s(m)(k,a) of Sec. 4 when one or more of the phases rP~(a) 
= 21'1 for integral I. We know in the case of the Mittag­
Leffler series for /12 (k,a) that the series converges as long as 
aiR </3;, no matter what the individual phases may be. 
Thus, if the Mittag-Leffler series converges, but one of the 
subseries S~~(a), cf. Eq. (3.13), diverges because its phases 
equals 21'1, then it is reasonable to assume that there is an­
other divergent subseries in the set {S ~;~ (a) ) whose terms 
can be combined with the terms of the divergent series 
S~~(a) to form a convergent series if the terms of the new 
series have been ordered according to the same rule that was 
used in ordering the terms of the Mittag-Leffler series. 

To pursue this possibility let us assume that rP~(a) 
= 21'1, where rP ~~(a) is the phase factor for the terms of the 
seriesS~~(a), We next examine the two seriesS~K~I) (a) and 
S~K+',') (a) generated by the two neighboring families of poles 
k~ I and k~l , respectively, where the parameters defining 
these series are given by 

/3K'=/3K, m'~~/ =~,i1 l~-;l =/~, ~-;:~(j-2) =0, 

~-;),(j) = - (I + N~), and ~-;:/ = ~,i for all other i, 
(BI) 

for the parameters of S~;,l), where 

" 
N ~ = 1 + 2: n'K,i , (B2) 

and 

/3 K" __ /3K, m'.·+1 m'.. /j+1 -/j n'.·+l - 0 
KN,i == K,i' K" -,0 IOl,N(j+l) - , 

~~1(j -I) = I and ~~/ =~,i for all other i, (B3) 

for the parameters of S~K:;l) (a). With these parameters and 
the definitions of the phase and power functions given by 
Eqs. (3.14a) and (3.I4b), one readily finds that 

1':,-1 (a) = 1';,-;1 (a) = 1'; (a) , 

rP~-;1 (a) = 21'~,N(j -2) , 

rP~;;1 (a) = 21'(1 + N~) , 
(B4) 

Hence, the two neighboring series have the same power and 
phases (mod 21') as the seriesS~~(a), so they can potentially 
be the ones that can be combined with it to produce a single 
convergent series. However, the constrains that the param­
eters ~-;:1(;) and ~;;,~(j -I) must be nonnegative integers, 
cf. Sec. 3, implies that the parametrization of S ~K~l) (a) is 
only valid if 1< - N~, and that the parametrization of 
S<j);/) (a) will only be allowed if 1>0. 

Our effort now divides into three separate tasks. First 
we must show that when 1< - N~ the series S~~(a) and 
S ~K---' I) (a) combine to form a con vergent series, then we must 
show that if 1>0 the series S~~(a) and S~K+'/ lea) can be so 
combined, and, finally, we must explain what happens when 
1 - N~<I<-1. 

The key to carrying out all three tasks is provided by a 
closer examination of the amplitude function Cja,K(a), that 
appears in Eq. (3.11). The detailed derivation of the asymp-
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totic form of .<n~(a) reveals that 

C~.Aa) = Fa(f3'~j~~X + N~) 
[AN(J+I) J 'rex +1) 

X Yi (AJ~'i)(AN(j_I) )X+N~, 
1=0 (WK•i )! AN(;) 

wherex=~jXV21T, Ao = l,andX~'~j and Ai with 

(B5) 

i = 1, n -I, are defined by Eqs. (3. 14c), (2.29), and (2.24), 
respectively. The amplitude Fa {f3 , is the same for all fam­
ilies, i.e., it is independentofj, and it depends upon the wave 
functions X I and X 2, for example, if pie = aiR then Fa (P, 
= 2R 3( -I) ~; (a)X2 (a)/1T. (The remaining possibilities 

will not be listed since Fa ({3 , will play no role in our 
arguments.) 

If ¢>~(a) = 217"1, then x = 1, and one finds that 

. (1 + N ~ -I)! . 
C~H(a)a: = (I +1)(1 +2)· .. (1 + N~ -1). 

. I! (B6) 

Clearly C~.K(a) will vanish if I is an integer satisfying 
I - N ~ <J.;;; -1. This result completes one of our tasks. Al­
though there is no compensating series for S ~~ (a), when 1 is 
an integer in the range 1 - N ~ .;;;1.;;; -1, none is needed for 
then S~~(a) = 0. 

Next we form the ratios ofthe two coefficients of inter­
est, obtaining 

C~.,.(a) 

C~.K(a) 
(B7) 

where i = j -I and v = K' if!.;;; - N ~, and i = j + 1 and 
v = K" if 1'>0. 

Before we combine the two series S ~~ (a) and S ~: v (a) to 
form a new series S<j,1Aa) and show that the latter series 
converges, we shall consider the series T;';;(k,a) defined by 

T';,:/(k,a)-== L fjj';,~M(k, a), (BS) 
M>O 

which was discussed in Sec. 4, where it was imply referred to 
as the fjj series. From Eq. (4. lOb), one sees that the phase 
and power functions, ¢>~(a) and 1T~(a), respectively, of the 
series T';,;!(k,a) are identical to those of S ~~(a), therefore, if 
we once again assume that ¢>~(a) = 21T1, it follows from Eqs. 
(4.lOc), (B5), and (B7) that D ';,;}(a), which is the amplitude 
function for fjj ';,/M' vanishes for 1 - N ~ <J.;;; -I, and that 

D;.~(a) ~i 
D ';,;}(a) = - ~j , 

(B9) 

where again i = j -1 and v = K' if 1.;;; - Nl", and i = j +1 
and v = K" if 1'~O. As was done in the case ofthe S~~(a) 
series, the terms ofthe T';,;}(k,a) and T';,';(k,a) series shall be 
combined to form a convergent series r';,;}(k,a). 

To construct theconvergentsumS~~(a)[or f';,;}(k,a)], 
one combines the terms of S~~(k,a) and S~~v(a)[or 
T';,;}(k,a) and T';,~(k,a)] into a single series with the terms 
ordered according to I k n I, or in the case of degeneracies in 
Ikn I, they are ordered according to I Imkn I, where kn is the 
pole of 112 (k,a) from which the term arose. According to the 
Cauchy condition27 a series ~an converges if the partial sum 
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~n = M.Nan tends to zero for every N> Mas M tends to infin­
ity. Suppose we form such a partial sum from the series 
S~~(a) [or t';,;}(k,a)]. Since the partial sum is a finite sum, it 
can be written as the sum of two numbers with one being the 
sum over all terms in the partial sum that comefromS~~(a) 
[or T;';}(k,a)] and the other being the sum over all terms 
from S~~v(a) [or T';,~(k,a)]. Each of these numbers can be 
evaluated by means of the Euler-Maclaurin summation for­
mula.25 The major contribution to each number will come 
from the integral term in the Euler-Maclaurin formula. But 
by virtue ofEq. (B7) [or (B9)] the integrand of the integral 
associated with the (j,K) sum equals minus one times the 
integrand associated with the (i, v) sum, and the limits of 
integration are nearly equal. Thus, the sum of the two inte­
grals nearly vanishes and one finds that the magnitude of the 
partial sum has the same order of magnitude as that of its 
first term. Hence, the magnitude of the partial sum for the 

series S~~(a) is 0 (M - ";'), and the magnitude of the series 

t;.;}(k,a) is 0 (M - "',+ mil - k -I ~jM I-I). Therefore, if 
aiR <Pi so that 1T; > 0, the partial sum for S~~(a) will tend 
to zero as its lower index tends to infinity. This proves the 
convergence of S~~(a). From Eq. (4.11) we see that 
/1 - k -I ~jM I -I is uniformly bounded in I&' for every val­
ue ofj. Therefore, if aiR <pC(m), which implies that 
m - 1T~ < 0, the magnitude of the partial sum of the series 
t ';,;}(k,a) will tend to zero uniformly in I&' as the lower index 
of the partial sum tends to infinity. This proves that 
t';,;}(k,a) is uniformly convergent in 1&'. 

APPENDIXC 

Theorem: Given an arbitrary convergent series 
A = ~: = I an' then the series B/z) = ~:= Ian (l + nz) - P, 
withp = 0,1,2, .. ·, converges uniformly in the region 
T = f z = reielr;;;.O, - ° 0 .;;;0.;;;°0 I with 1T12.;;;0o < 1T. 

Proof The theorem is obviously true for p = 0. Let us 
assume that it also holds for some integer p > 0, and define a 
remainder series R N by 

RN==- ! an(l + nz)-P 
n= N 

Then 

Rn -Rn+1 =an(l+nz)-P, 

and 

M-\ 

= L 
n=N-I 

RN 
=----

I +Nz I +Mz 

+ M~ I (I 1 )R 
n-:::N I+(n+l)z - l+nz n+1 

RN RM+ I = --- - --~~ 
1 +Nz I +Mz 

+ Mfl ( 1 2 
n = N 11 + (n + I)zl 
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M-I( n+I n)R +z* ~ - n+ 1 , 

n~N 11 + (n + I)z12 11 + nzl2 

so that 

I f an I IRNI + iRM+II 
n=N(I +nzy+1 < 11 +Nzi 11 +Mzl 

+ MnL=-N
l 

I II! \ 11 + (n + I)z12 11 + nzl 2 

M-11 n+I 
X IRn + I I + Izl L 11 ( 1) 12 

n=N + n + z 

- 11: nZ12! IRn + I I . 

Since the series Bp(z) converges by our induction hy­
pothesis, then for any Co > ° there exists an No such that 

IRnl <Co, for every n>No and zET. (C3) 

It then follows for every M> N> No, that 

! ntNQn(l +nz)-p-I! 

<Eo [11 + Nzl- I + 11 + Mzl- I + SI + rS2 ) , (C4) 

where 
M-I 

SI = L III + (n + I)z12 - II + nzl- 21 (C5) 
n = N 

and 
M-I 

S2= 2: /(n+I)II+(n+I)zl-2- n ll+nzl- 2 1· 
n=N 

(C6) 

Let us examine the term S I . First we note that the terms 
within the outermost absolute value signs on the right-hand 
side of (C5) can be written 

1 

11 + (n + I)Zlz 11 + nzl 2 

_ - 2rcosO - (2n + I)r 

- 11 + (n + I)z1211 + nz[2 
(C7) 

Thus, it is apparent that these terms are positive (or zero) up 
toacertainn = n l - 1< -! - (cosO)lr<nl,andnegative 
thereafter. Therefore, if M<nl or N>nl 

SI = \ ~t~ (11 + (n + I)zl-2 -11 +nzl -
2
)\ 

= I \1 + Mzl 2 - 11 + Nzl- 21 , 
and if N <n l <M 

n-I 

SI = L (11 + (n + l)zl- 2 - 11 + nzl- 2) 
n= N 

M-I 
+ 2: (ll+ nzl- 2 -jl+(n+I)zl-2) 

= 211 + n,zI - 2 - /1 +Nzl- 2 - II +MzI -2. 

In all cases one has 

{

M' 
where m = n

" 
N, 

for nl>M, 

for N<n, <M, 

for n l <N. 
(C8) 
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Next we consider S2 . Since 

n + 1 n 

11 + (n + I)z12 11 + nzl2 

1 - n(n + I)r 
= II + (n + I)zlZII + nz/ 2 

' 

one sees that these terms are positive or zero for n<;n2 -1 
< -1/2 + I (4 + r) -112 12R < n2 , and negative thereafter. 
Thus, 

Sz = I M - N I, forN>n z or M<n z, 
II +Mz/z 11 +Nz/ z 

2n2 M N 
Sz= ----

II + n2 z1 2 II + Mzl2 Jl + Nz/z ' 

and thus for N <nz <M, 

2m 
S2 < , wherem = n2 , for N <n2 <M, 

II +Mzl2 {

M' for nz >M, 

N, for n2 <N. (C9) 

To complete the proof one needs upper bounds on 
11 + nzl - 2 and nril + nzl - z that hold for all n> 1 and zET. 
For the first one has 

11 + nzl2 = 1 + 2nrcosO + n2r 
> 1 + 2nrcosOo + n2r = sinzOo + (cosOo + nr)2 , 

so that 

11 + nzl - 2«sinOo) - 2, for all n> 1 and zET. (ClO) 

To obtain an upper bound on the second we observe that 
(1 - nr) - 2>0 and thus 

2nr(I + cosO)<;l + 2nrcos8 + n2r = 11 + nzl 2
, 

so that 

nril + nzl-- 2<HI + cosO) - 1<1(1 + cosOo) -I. (CII) 

From (C8) and (ClO) we see that 

SI <;2(sinOo) - 2, (CI2) 

while from (C9) and (CII) we find that 

rS2 «1 + cosOo) - I . (CI3) 

Combining (C4), (ClO), (CI2) and (CI3) yields 

(CI4) 

Since h (00 ) is positive and finite over the range of values of 
00 being considered, it can be seen that for any E> 0, if one 
choosesEo = Elh (00 ) and selects No according to the induc­
tion hypothesis (A3), then 

I ~t: (1 + :~y + I I < c , 

for every choice of M > N> No, and every zETo' Hence, 
Bp + I (z) satisfies the Cauchy condition for uniform conver­
gence of the series in T, and the induction proofis completed. 
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It is shown that the notion of a prolongation structure can be extended to higher 
dimensions and used to determine inverse scattering problems. The relationship to 
generalized Lax representations is also considered. The method is illustrated on the self­
dual Yang-Mills equations. A generalization to include Grassman algebra valued 
variables is shown to provide a scattering problem for the supersymmetric sine-Gordon 
equation. 

1. INTRODUCTION 

In previous work we have attempted to extend the pro­
longation structure method1-5 in two distinct directions. We 
have tried to generalize and develop the technique in higher 
dimensions6

-
9 and also to extend it by the inclusion of Grass­

man algebra valued variables. 10 In this paper we further ex­
plore the development of this approach for the determina­
tion of inverse scattering problems in three and four 
dimensions and illustrate its utility by the construction of an 
inverse scattering problem for the self dual Yang-Mills 
equations. 11.12 We then go on to combine the two approaches 
in order to determine an inverse scattering problem for the 
supersymmetric sine-Gordon equation. 13-15 

In Sec. 2 we examine the equations that may be related 
to a particular type of linear prolongation form in three di­
mensions. derive in a slightly different way some of the re­
sults of Ref. 6, and show the connection to the Lax represen­
tation approach of Zakharov and Shabat. 16 

In Sec. 3 we develop the analogous equations for four 
dimensions and emphasize in particular the relationship to a 
generalized Lax representation. 17 We wish to stress the point 
that the prolongation structure method can allow the direct 
determination of such a representation from the equations if 
it exists. The process is not trivially implementable however, 
and considerable experience and insight is required to imple­
ment the method in its current state of development. 

To illustrate the direct approach we tackle in Sec. 4 
equations of the self-dual Yang-Mills equations in their sim­
plest form due to Yang I I and Zakharov and BelavinY It is 
not necessary to use this particular complex form, but it does 
reduce the algebra to a more compact and manageable form 
which is easier to follow. 

In Sec. 5 we link this work to that of Ref. 10 by consider­
ing a theory involving superfields. This example is the first of 
its kind in that it involves not only four dimensions, two of 
which are fermionic, but also leads to a coordinate depen­
dent prolongation form related to a generalized prolonga­
tion structure which is an incomplete graded Lie algebra. 

We do not attempt to determine solutions using the 
scattering problems defined. The purpose of this paper is to 

show the all-embracing nature of the prolongation structure 
idea, as applied to partial differential equations, to determine 
inverse scattering problems. However, a detailed analysis of 
the new results of this paper will be presented elsewhere in 
the context of specific equations. 

2. LINEAR PROLONGATION FORMS IN THREE 
DIMENSIONS 

Consider linear prolongation forms fl of the following 
structure, 

(2.1) 

where lT = ~E"bedxa 1\ dxb and the OJa are a set of constant 
matrices which commute with one another, 

[OJa,OJ b ] =0, Va,b. (2.2) 

In general some coordinate dependence is possible in the OJa 
but we will not consider that possibility in this paper in any 
generality. We will present an example of coordinate depen­
dent OJ a in our construction of an inverse scattering problem 
for the supersymmetric sine-Gordon equation in Sec. 5. 

Taking the exterior derivative of (2.1) gives 

dfl = (dFe1\ IT)t + (FelT) I\dt 

If 1] is a I-form of the type 

1] = 1]~xa, 

then 

where u = dx l l\dx2 l\dx3
• 

(2.3) 

(2.4) 

(2.5) 

We see from (2.5) that fl is a prolongation form for the 
ideal spanned by the elements aij of the matrix valued 3-
form a defined by 

a = dFe 1\ ue - 1]~eu 

where 1]a and Fe are related by 

Fe = 1]aWbE"be. 

(2.6) 

(2.7) 
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As [OJa,OJb] = 0 it follows that we have a constraint on the 
Fa given by 

FJilc=O. (2.8) 

Ifwe now suppose that OJ3 is invertible, then by redefining S it 
may be taken to be unity. To determine the content of Eq. 
(2.6), which we would like to express in terms of the Fa' we 
must simplify the quantity TJJe which occurs. We note that 

- TJJ( [FI,OJI] + [F2,OJ2]), 

and so by virtue of Eq. (2.7) we have 

TJJe = [FhF,] - TJJ( [FI,OJI] + [F"OJ,]), 

Therefore, if we choose OJI and OJ, so that 

[FhOJ I] + [F"OJ,] =0, 

our basic 3-form takes the form 

a = dFJ\ue - [FhF,]u, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

which is closed and consequently equivalent to a set of par­
tial differential equations. We should also recall that we have 
the condition imposed upon OJhOJ, that, 

[OJ"OJ,] = O. (2.14) 

The existence of the nontrivial solution for OJ, and OJ, to 
(2.12) and (2.14) means that the three-dimensional equa­
tions (2.13) have an inverse scattering problem obtained by 
restricting n to a solution manifold of that system. In that 
case we obtain the equations 

CabJilaS.b = - F ct, 
which for c = 1,2 are 

S.2 - OJ,S.3 = F,s 

and 

S.l - OJ,S.3 = - F,s, 

corresponding to the equation 

Fe.e = [FhF,], 

which may be reduced to 

a,FI + a,F, - alOJ,F, + OJ,F,) = [FhF,] 

by use of (2.8). 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Clearly we have shown that these equations have the 
generalized Lax form 

[LhL,] = 0, 

where 

L, = a, - OJ,a, - FI, 

L, = a, - OJ,a3 + Fz, 

(2.20) 

(2.21) 

(2.22) 

and OJ, and OJ2 are any pair of constant commuting matrices 
having the additional property that 

[OJI,F,] + [OJ2,F,] = O. (2.23) 

The principal interest lies in the case where the OJa are either 
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matrices and/or parameter dependent. For example, if we 
take 

OJ I = A and OJ, = A' (2.24) 

and 

F, =A, - A 'A J, (2.25) 

F, =Ayl, - AI, (2.26) 

FJ =AIA' -A,A, (2.27) 

which conforms to the constraint (2.8) which in this case is 
expressed in the form 

F, + AF, + A 'F, = O. (2.28) 

Equations (2.19) then become 

Fab = Aa.b - Ab.a + [Aa.A b] = 0 (a,b = 1,2,3), 
(2.29) 

the vanishing of the Yang-Mills fields in three dimensions. 
It should be recalled that this gives only special solutions 
because only in the case of self dual fields in four dimensions 
is Fab = 0 equivalent to the full field equations. However, we 
have obtained an interesting inverse scattering problem for 
the SU(2) Yang-Mills equation Fab = 0 in threee dimen­
sions which is given by 

S.2 - A 'S.3 = (A2 - A 'A 3)s, 

S.l - AS.3 = (A, - AA ,)5. 

(2.30) 

(2.31) 

3. LINEAR PROLONGATION FORMS IN FOUR 
DIMENSIONS 

Consider a linear prolongation form n of the type 

n = !(OJabdxa I\dxb) I\ds + Fpes (3.1) 

where crt = (l/6)~beddxa 1\ dxb 1\ dxe and OJab are constants. 
The general case of matrix valued OJab is more difficult and 
will only be considered in a special case. Taking the exterior 
derivative of (3.1) we obtain, 

dn = dFe 1\ u"s + Feu" I\ds · 

If TJ is a I-form of the type 

TJ = TJflXa , 

then 

(3.2) 

(3.3) 

(3.4) 

and so we see that n is a prolongation form for the ideal 
spanned by the elements aij of the matrix valued 4-form a 
defined by 

a = dFe 1\ U c - TJJeu, where u = dx'l\dx'l\dx' I\dx', 

and TJe and Fa are connected by the relationship 

Fd = - !cabedTJJilab = iiJdeTJe' 

where 

(3.5) 

(3.6) 

(3.7) 

The most interesting cases arise when the matrix iiJ de is singu-
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lar and we restrict our attention in this paper to the case 
when wde is of rank 2. The explicit form of W is given by 

_ (_OW" 
lU34 lU42 

W') ° lU'4 lU3' lU= (3.8) 
- lU42 -lU'4 ° lU'2 
-lUll -lUll - lU l2 ° 

If we take the first two rows as independent, then there exist 
ri such that 

rt(0,lUl4,lU42,lU2l) + r2(lUJ4,0,lU'4,lU3') = ( - lU42, - lU'4,0,lUd 

and 

we easily find that 

lU42 lU'4 r2=-, r, = --
lU J4 lU34 

lU23 lUJ' r4=-, r J = --
lUJ4 lUJ4 

and 

From (3.6) we then obtain 

FJ = r,F, + r2F21 

F4 = rJ', + r"F'2' 

, 

, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

As in Sec. 2 we need to analyze the term (1/ e Fe) in a and we 
see that 

1/c Fe = 1/,F, + 1/2F2 + 1/J(r,F, + r2F2) + 1/4(rJ', + r"F'2) 

From (3.6) we have 

F, = lUJ41/2 + lU421/l + lU2l1/4, 

Therefore, we have 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Without loss of generality we can choose lUl4 = 1, and our 
equation for a becomes 

a = dFJ\ue - [F"F2]u, (3.20) 

and the elements a ij generate a closed ideal. The correspond­
ing field equations are therefore 

(3.21) 

or 
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(Ft,t - r,Ft,3 - rJ't,4) + (F2,2 - r2F2,3 - r"F'2,4) = [F"F2]. 

(3.22) 

Again the equations have a generalized Lax representation 

[L"L2] = 0, (3.23) 

with 

L, = (a2 - r2al - r4a4 - F,) (3.24) 

and 

L2 = (a, - rial - rla4 + F2) (3.25) 

and so if we introduce the definitions of the ri we obtain 

L, = (a2 - lU42aJ - lU2Ja4 - F,), 

L2 = (a, + lU'4al + lU3Ia4 + F2), 

(3.26) 

(3.27) 

where condition (3.13) simply defines lU'2 to be given by 

(3.28) 

which places no constraint on the coefficients lU 42,lU23'lU t4,lU 3t 

which appear in L, and L 2• 

We can easily allow the lUab in this special case to be 
matrix valued if we add in the additional constraints that 

(3.29) 

and taking lUl4 = I the identity matrix the analogue of (2.23) 
is 

and 

[lU3t,Ft] = [lUB,F2], 

together with the definition of lU l2 as 

lU12 = (lU42lU31 - lU I4lU23)· 

(3.30) 

(3.31) 

(3.32) 

These equations greatly generalize some of those presented 
in Ref. 9. 

We could go on to determine that the analog of the free 
Yang-Mills fields that arise in our study of three-dim ens ion­
al examples in Sec. 2 are the self-dual Yang-Mills equations. 
Rather than adopt the same approach we attempt in the 
following section to show how one may, by using the prolon­
gation method ideas, derive an inverse scattering problem 
for the self-dual Yang-Mills equations directly from the 
equations themselves. 

4. THE SELF-DUAL YANG-MILLS EQUATIONS 

The self-dual Yang-Mills fields expressed in the com­
plex coordinates introduced by Yang" and Zakharov and 
Belavin'2 take the form 

(4.1) 

(4.2) 

=0, (4.3) 

and may be expressed by the closed ideal of 4-forms spanned 
by the forms a i defined by 
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a 1 = (dB 1 Adz1 + dB,Adz, + [B"B,)dz, Adz,)dz, Adz" 

(4.4) 

(4.5) 

- dB,Adz,)Adz,Adz, + ([B"B 1+] + [B"B t ])a. 

(4.6) 

Consider a linear prolongation form n having the 
structure 

n = d5A (w 12dzJ\dz, + wlTdzlA dZI + W1'2dziA dz, 

(4.7) 

where the Wab are scalars. The requirement that n prolong 
the ideal <a"a"a,) spanned by a" a, and a, is 

dn =fiai + (r/Idz, + 71,dz, + 7lTdzl + 712dz,) An, 
(4.8) 

and this shows us that we must have 

F, = FI(B"B t), 

F, = F,(BI,B t). 
Fl = FT(Bl>B t ), 
Fi = Fz(B"B 1+ ). 

FI'B, = F2'B" 

FT'B) =F2'B," 

FI'B,' =F1',8, = -F2'82 = -F2'8," 

the relationships 

F, = - wu71z + WZ271T - wzT71z, 

FI = - W 1271, + W l'27lT - W 1 T712' 

Fl = - W2271, + w(z71z - w 12712' 

F2 = - w2J711 + wff712 - w12711' 

and the central equation 

[B"B,]FI'B, + [B,t,B t ]£f'B,' + F1'B,' I [BI,B 1+ ) 

(4.9) 

(4.10) 

(4.11 ) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

+ [B"B z+ ] 1 = (71,F, - 71,F, + 711F f - 712F2)' (4.20) 

From (4.9)-(4.15) we see that possible forms for Fu F" F1 
and F2 are 
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F, = (x,B, + x,B t ), 
F, = (xIB, - x,B t ), 
Fl = (x,B I + x"B 2+ ), 
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(4.21) 

(4.22) 

(4.23) 

F2 = ( - x,B, + x"B t ), (4.24) 

w here the Xi are scalars. In order to reduce the algebra of the 
general case we make the additional ansatz consistent with 
(4.21)-(4.24), that 

FT=AF" 

F2 = -AFI, 

which is equivalent to 

x, = + AX, and X3 = - AX,. 

(4.25) 

(4.26) 

(4.27) 

This in not necessary but greatly reduces the required alge­
bra and leads to useful. if not most general, results. 

The term (71,F, - 71,F, + 71TFT - 712F2) must be con­
verted into commutation relations between the F if the nor­
mal prolongation ideas are to be used. Using ou~ ansatz 
(4.25)-(4.26) this term becomes 

(711 + A71'5,)F, + (A711 - 71,)F" 

and we need to express the combinations (711 + A712) and 
(A711 - 71,) in terms of the Fa if we are to obtain a Lie alge­
bra-like structure. Equations (4.16)-(4.19) give 

711 (W22 - AWn) - 71,wl'i + 712(W12 - AW(r) = 0, (4.28) 

71,w'l + 71,(AWT2 - wll') + 711([1)1' - AWzz ) = O. (4.29) 

These are solved by the relations 

W22 = AWn, 

W 12 = 0 = W", 

WI' = AWIT = AW2Z' 

in which case (4.16) and (4.17) become 

F, = - wU(71, - A71T), 

F, = - wT2(71, + A712)' 

and so we are able to express the quantity 
(71,FI -7],F, + 711FT - 71~'5) as 

- (WI:?:) -1[F"F,]. 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

Clearly we can take wn = 1 without loss of generality and so 
the essential equation (4.20) becomes 

[B I,B,]F1'B, + [B t ,B t ]F1'B,' + F rB ,' ! [B"B t ] 
+ [B"B t] J + [F"F,] = O. (4.35) 

From the forms (4.21)-(4.24) with condition (4.27) we get 

F1•B,=X" F 1•B,' =X,= +Ax" FT,B; =X3= -A'x, 

and (4.35) becomes 

(x, + x~){[BI,B,] + A {[B"B t] + [B"B 2+ ]} 

(4.36) 

which is satisfied for arbitrary A if x, + xi = 0 and 
XI = - l. We have therefore obtained a prolongation form 
which looks as follows, 

n = d5 A (dz, Adz, + A (dz, Adz, + dz,Adz,) + A. 'dz, 

Adz,) - dz,!\dz,!\ (dz, - Adz,) (B, + AB t g 

(4.37) 
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Ifwe section this onto a solution manifold of the self-dual 
Yang-Mills equations we obtain the equations 

Sz, + ASz, = (BI - AB 2+ )S, 
Sz, + ASz, = (Bz + AB t )S, 

If we denote by DI and D2 the differential operators 
DI = az , + Aaz, and D2 = az, - Aaz, we have 

(4.38) 

(4.39) 

DIS = (BI - AB 2+ )S, (4.40) 

D2S = (B2 + AB 1+ )S, (4.41) 

and the integrability conditions DID2 = D2DI give 

D2(BI -ABt) -DI(Bz +AB t) 
- [(BI - AB t ) , (Bz + AB t ) 1 = 0, 

which is equivalent to 

(4.42) 

{B1,2 - B201 - [BhBz]} + A {- B 2;2 - BloT - Btl - B20Z 

- [BhB 1+ 1 - [Bz,B t]} + A z{B 2;1 - B I;Z 

+ [B 2+ ,B I+]} = 0, (4.43) 

and satisfied for all A if B a is a solution of the self dual Yang­
Mills equation. Belavin and Zakharov have recently 
shown l2 how this inverse scattering problem may be used to 
construct instanton solutions for this set of equations. Draw­
ing on the experience gained from this example we will now 
show how a UJ ab constructed from super fields may be used to 
determine an inverse scattering problem for the super-sym­
metric sine-Gordon equation. 

5. THE SUPERSYMMETRIC SINE-GORDON 
EQUATION 

A natural way of incorporating fermions into a model is 
via a supersymmetric extension. The model which results 
from the completely integrable sine-Gordon equation was 
considered by Di Vecchia and Ferrara l

' and HrubylS and 
shown to have the interesting property that instanton and 
soliton solutions remain along with other attractive 
properties. 

The model is defined by the action in supers pace given 
by 

(5.10) 

where DI and Dz are defined below and which yields the 
superfield equation of motion 

(5.2) 

cP is the superfield with components ¢, t/J, and F defined by 

cP (x,O) = ¢ (x) + iift/J(x) + !iifOF(x) (5.3) 

in terms of which the field equation (5.2) can be expressed as 

F = - msin¢, ilt/J = - mt/JcostP, (5.4) 

O¢ = - m(FcostP + ~(ifi¢Sin¢ ) 
(5.5) 

We will now show how an inverse scattering problem 
can be constructed for such an equation. Let us take as defin-I 
ing forms 
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a l = (dOI/\dx /\dT + idOI /\dOz/\dT02)/\dP 
+ imsin¢u, (5.6) 

a 2 = (d02/\ dx /\ dT + idOl /\ d02/\ dxOI) /\ d¢ 
-uP, (5.7) 

where u = dOl /\ d02/\ dx /\ dT; where the fermionic fields 
are concerned we are using left derivatives, so for example, 

dP = (dOIPe, + d02Pe, + dxPx + dTPT ), (5.8) 

where P eo is the left derivative of P defined uniquely by 

P = OIPe, + terms independent of 01, (5.9) 

Sectioning these forms yields 

al = u{(Pe, - iOzPx) - imsin¢} = 0, 
or Dz = imsin¢, (5.10) 

where 

D2t/J = - t/Je, + i02t/J,x' (5.11) 

a2=u{(¢e, +iOl¢T)-P}=0,orP=D1¢, 

where 

(5.12) 

Thus the closed ideal <al,az) spanned by al and a z is com­
pletely equivalent to the supersymmetric sine-Gordon 
equation 

D2D I¢ = imsin¢, (5.13) 

and we note that the operators DI and D2 anticommute 
I DhDZJ = 0. Consider a prolongation term n having the 
structure 

n = (dx /\ dT - dOl /\ dxf3d02/\ dT + ydOI /\ d02) /\ ds 

+ [dOl /\ dx /\ dT + dOl /\ d02/\ dTf3 ]Fs 

+ [d02/\dx/\dT+dOI /\dOz/\dxa]Gs, (5.14) 

where F = XI + Px2, G = sin¢xJ + cos¢x. and a = iOh 

f3 = i02, and y = - af3 = + OIOZ' Clearly XI and Xz may be 
functions of 01, and X J and x. functions ore2 without affecting 
the calculation. We then easily determine that 

- dn = (dOl /\ dx /\ dT + dOl /\ dOz/\ dTf3) 

/\ (EX I - PEx2)ds + (d02/\ dx /\ dT 

+ dOl /\ dOz/\ dxa) /\ (sin¢ExJ + costPEx.)ds 

+ (dOl /\ dx /\ dT + dOl /\ dOz/\ dTf3) /\ dPx2s 

+ (d02 /\ dx /\ dT + dOl /\ d02/\ dxa) /\ d¢ 

(5.15) 

where for a matrix M which may be split into boson and 
fermion parts M B' and M F' so that M = M B + M F we de­
fine EM to be given by 

(5.16) 

In terms of the forms a h a 2 we have 

- dn = alxzs + az(cos¢xJ - sin¢x.)s 

- imsin¢ux2s + uP (cos¢xJ - sin¢x.)s 

+ (dOl /\ dx /\ dT + dOl /\ d02 /\ dTf3) 
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+ dOl A d02 A dxa) A (l"in<,6Ex3 + C0s(,6EX4 )fJt 

If 1/ is a I-form given as 
(5.17) 

1/ = nldOI + 1/2d02 + 1/3dx + 1/.dT, (5.18) 

then 

1/ Afl = (1/1 -1/.a)(dOI Adx AdT + {3dOI Ad02 AdT) Adt 

+ (1/2 + 1//3)(d02 Adx AdT + adOI Ad02 Adx) 

A dt + (1/1 - 1/.a)aGt + (1/2 + 1//3 )aFt, (5.19) 

Therefore, we will have 

dfl = -1/ Aflmod<al,a2), 

provided that 

1/1 -1/.a = (EXI - PEX2) 

and 

together with the relationship 

- imsin<,6X2 + P(C0s(,6X3 - sin<,6X.) 

= (sin<,6EX, + COs(,6EX.)(XI + PX2) 

+ (EXI - PEX2)(sin<,6X, + cos(,6X.), 

which may be decomposed into the equations 

- imX2 = (EX3)XI + (EXI)X3, 

X3 = X.x2 - (EX2)X., 

- X. = X,x2 - (EX2)X3, 

o = (EX.)XI + (EXI)X., 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

These equations can be reduced to the form of an in­
complete graded Lie algebra by splitting each of the Xi into a 
bosonic and fermionic part. If we write Xi = X f + X 1F then 
Eqs. (5.24)-(5.27) become 

{xf,xf}-{xf,xD= -imXf, (5.28) 

[Xf,xf] + [Xf,xfj = - imXf, (5.29) 

{Xf,xD + [Xf,xf] =xf, (5.30) 

[Xf,xf] + {Xf,xD = xf, (5.31) 

{Xf,xD + [Xf,xf] = -xf, (5.32) 

[Xf,xf] + {Xf,xD = -xf, (5.33) 

{Xf,xf} - {Xf,xD = 0, (5.34) 

[Xf,xf] - [Xf,xf] = o. (5.35) 

These equations are a generalized prolongation structure for 
the supersymmetric sine-Gordon equation. 

A very much reduced algebra may be obtained if X2, X3 
and X. are taken to be purely bosonic. The algebra then re­
duces to 
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[xf,xf] = 0, 

[X:,xf] =Xf, 

[Xf,xfJ = -Xf, 
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(5.36) 

(5.37) 

(5.38) 

[xf,xf] = 0, 

{Xf,xf} = - imXf· 

(5.39) 

(5.40) 

We could also take X f to be zero, but more generally it has 
the form 

where Y is a bosonic matrix and satisfies the bracket 
relations 

[Xf,Y) =0= [Xf,Y), 

(5.41) 

(5.42) 

and any multiple - AI of the identity matrix would suffice. 
To obtain a representation of the matricesXf, xf, xf, xf 
we will first attempt to close the X f, X f, X f algebra and 
then impose the anticommutation result (5.40) as a 
constraint. 

We can close the X f, X f, X f algebra if we introduce 
the additional bracket relation 

[Xf,xf] = - a2X2• 

Ifwe put 

(5.43) 

X. = aYh X, = + aY2 and X2 = + Y3, (5.44) 

we obtain the algebra 

[Yh Y2] = Y3, (5.45) 

[Yh Y3] = Y2, 

[Y2,Y3 ] = - Yh 

and the constraint to be imposed is that 

{ B} im X),Y2 = --Y,. 
a 

(5.46) 

(5.47) 

(5.48) 

A three-dimensional representation of the algebra, (5.45)­
(5.47), which is essentially the adjoint representation, is giv­
en by 

Y,~G 
0 

~l Y'~( ~ 
0 -1) 

0 0 o , 
-1 -1 0 0 

Y, ~( : 1 
-1 

B 0 (5.49) 

0 

Ifwe substitute Y2 and Y3 into (5.48) we find that any matrix 
of the form 

xf= ( : : i;) 
-im 

-c -a 
a 

(5.50) 

will do. We choose to put a = e = c = 0 and take X f in the 
form 

xf= im (~ 
a 0 

o 
o 
-1 

(5.51) 

Sectioning fl onto a solution manifold of the supersymme­
tric sine-Gordon equation we obtain the inverse scattering 
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problem 

5,e, + iO I5,T = - (XI + PX2)5, 
5,e, - i025,x = - (XjsintP + X 4coscp )5· 

(5.52) 

(5.53) 

In terms of the representation just constructed we have the 
problem 

o 
o 

- coscp 

- sintP) 
- coscp 5. 

o 

(5.54) 

(5.55) 

Both (T and A are arbitrary constants in these equations. 

A connection may be obtained if we try to relate this 
inverse scattering problem to the inverse scattering equa­
tions of the classical sine-Gordon. The operator DI has the 
property that 

DIDI = + iJ p (5.56) 

and applying DI to each side of (5.54) gives 

-iA JTtP 
Pm 

(T 

JI4= -JTtP -t(A+';2) 0 

Pm 
0 

(T 

Ifwe select m2/cr2 = - U, i.e., (T = imlV' U ,we obtain 

o 5, (5.58) 

o -iA 
which can be thought of as an isospectral JxA = 0 eigenva­
lue problem. We note the similarity of the problem to the 
analogous classical equation to which it reduces in the ab­
sence offermionic operators. Thus, our final inverse scatter­
ing problem is given by 
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P 

D15= c -P AOI -\~u) (5.59) 

0 v'U- AOI 

C~in. 
0 -'i"") D~= 

im 
0 - coscp 5, 

v'u - coscp 0 
(5.60) 

and is the inverse scattering formulation recently announced 
by Girardello and Sciuto. IS 
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Practical methods of computing numerical values for otT-shell two-body Coulomb scattering 
amplitudes are developed. The methods are based on well-known analytic representations of the 
amplitudes. The results of a comparative computational study of the ditTerent methods are 
presented. It is found that the methods produce numerical values sufficiently precise for use in 
treating many-body problems formulated in terms of two-body amplitudes. 

I. INTRODUCTION 

Many physical problems involving a system of three or 
more interacting bodies can be conveniently formulated in 
terms of the off-shell two-body amplitudes for scattering be­
tween every pair of bodies in the system. Therefore, an abili­
ty to compute accurate numerical values for these ampli­
tudes is useful in solving the more complex problems. 
Examples of such problems involving simple Coulomb inter­
actions are the binding or scattering of an electron or posi­
tron from a hydrogen atom, treated by the Faddeev equa­
tions approach. 

For problems involving Coulomb interactions, several 
analytic representations are known for the off-shell two­
body amplitude. These representations can be used as the 
starting points for developing practical procedures for com­
puting accurate numerical values for the amplitUdes. This 
author has conducted a comparative numerical study of 
three such procedures, each based on a different analytic 
representation, and each restricted to use for negative values 
of the two-body energy. Two of the procedures were devel­
oped by this author. For a many-body problem involving 
negative values of the total energy, the negative energy val­
ues of the two-body amplitudes are the only values entering 
the problem's formulation. 

The off-shell scattering amplitude for any two-body 
system satisfies the well-know Lippmann-Schwinger inte­
gral equation. In operator form, this equation is 

T(E) = V + VGo(E) T(E), 

where 

Go(E) = (E - Ho)- I, 

E is an energy treated as an independent complex variable, 
Ho is the relative two-body kinetic energy operator, and Vis 
the scattering potential operator. In the plane-wave repre­
sentation, this equation becomes 

T(kl' k2;E) = V(kl' k 2 ) 

+ dk I' T(k k 'E) f V(k k) 

E-(fz2k'2/2fl) '2" 
(1) 

where 

a)Present address: Department of Physics, University of Nebraska, Lin­
coln, Nebraska. 

V(kl' k2 ) = (217') 3f drexp[i(k2 -kl)·r] V(r), 

and fl is the two-body reduced mass. The off-shell amplitude 
and the potential can both be resolved into partial wave 
components: 

t/(k l ,k2;E) = r f d (kl ·k2 ) P/(kl ·k2) T(k\ ,k2 ;E), 

v/(k l ,k2 ) = r f d (kl .k2 ) P/(kl .k2) V(kl ,k2 ), 

whereP/ is the Legendre polynomial. Note that kl ,k2' andE 
mathematically are all independent variables. The I th partial 
wave amplitude satisfies the integral equation 

t/(k\ ,k2;E) = v/(k l ,k2) 

2 i oo k 2v/(k l ,k) + - dk t/(k,k2;E). 
17' 0 E-(fz2k 2/2fl) 

(2) 

For use in most many-body problems, numerical values of 
the partial wave amplitudes rather than of the full amplitude 
are needed. 

For two-body Coulomb interactions, analytic expres­
sions are known for the full potential and for its partial wave 
components: 

V(k k )_~ Ze
2 

I' 2 - 2r Ikl _ k
2

1
2 ' 

V (k k ) ___ e_ Q I 2 Z 2 (k2 + k 2
) 

/ P 2 - 2kl k2 / 2kl k2 ' 
(3) 

where Ze2 is the product of the charges of the two bodies, and 
Q/ is the Legendre function of the second kind. 

II. METHODS OF COMPUTATION 

For all of the computational methods developed below, 
we rewrite the integral equations (1) and (2) as 

T(kl ,k2;E) = V(kl ,k2 ) + W(k l ,k2 ;E), 

t/(k p k 2 ;E) = v/(k p k 2 ) + w/(k p k2;E). 

The functions w/ and W, of course, satisfy the angular pro­
jection relation 

w/(k l ,k2 ;E) = r f d (kl ·k2 ) P/(kl ·k2 )W(kl ,k2E). 

(4) 
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FIG. 1. The contour Calong which the integrals (6) and (7) are defined. The 
cross-hatched segments along the positive real axis and the unit circle are 
the branch cuts in the integrand (7). 

In every method numerical values for tl are obtained by add­
ing values of VI and WI together. The VI values are obtained 
using Eq. (3), for which the values of the QI function are 
obtained using the simple recursion formula 

Qo(z) = -! log[(z + 1)/(z - 1)], 

QI (z) = zQo(z) - 1, 

QI(Z) = (1//)[(2/- l)zQI_ I (z) - (/- I)QI_ 2 (z)], 
i> 1. (5) 

The methods differ only in the procedure used to obtain WI 
values. 

The QI functions exhibit branch point singularities in 
the complex z plane at z = 1 and z = - 1. In computing 
values of the QI functions for complex arguments, the cut in 
the complex logarithmic function must be selected so that 
the QI functions exhibit a cut along the real axis between 
these branch point, but are continuous along all other parts 
of the real axis. 

A. Method of contour integration 

The development of the method of contour integration 
begins with the integral representation of the full amplitude 
given in a review article by Chen and Chen l

: 

W(k k 'E) _ 2oZe
2 

I' 2, - r(ei21r" _ 1) 

X dt , i t" 

c S(I-t)2-4tlkl -k212 

where, for negative real energies, 

U = (Ze21fi> Ip/2E 1
112

, 

S = (2pE - fi- k i) (2pE - fi-k ~ )/(2pEfi-), 

(6) 

and C is any contour in the complex t plane of the form 
shown in Fig. 1. We obtain a contour integral representation 
for WI by substituting Eq. (6) into the angular projection Eq. 
(4), interchanging the order of the integrations, and evaluat­
ing the angular integral analytically. This evaluation is sim-
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pIe, because the angular integral is of the tabulated form 2 

with 

JI dx PI(x) = - 2b QI( - a
b

), 
-I a + bx 

x = (k l ·k2 ), 

a = S(1 - t)Z - 4t(k i + k D, 
b = 8tk l k2. 

We thus obtain 

wl(kl,kz;E) 

2k,kz(ei21ra -1) 

i I 
(

4t(ki + kD -S(1- t)Z) 
X dtt a

- QI . 
C 8tk l k2 

(7) 

The above integrand exhibits several branch point sin­
gularities in the complex t plane, as shown in Fig. 1. The 
t ,,- I factor gives rise to a branch point at t = 0, with the cut 
lying along the positive real axis. The QI factor gives rise to 
four branch points lying on the unit circle, two in the upper 
half and two in conjugate positions in the lower half plane. 
The angular positions of these branch points are 

cos a( ±) = 1 + (2/S)(kl ± k2)2, 

where a( ±) is the angle between the branch point's complex 
radius vector and the positive real axis. The members of each 
pair of branch points are connected by a cut, also lying on the 
unit circle. In the limit k2 -k I , a(_ ) -0; that is, the two 
branch points nearer the positive real axis move arbitrarily 
close to the endpoints of the C contour. 

We now reduce the contour integral (7) to a form suit­
able for numerical evaluation. We consider the integrals 
along the circular segment and along the two straight seg­
ments of C separately, and make the following changes of 
variables: 

t = x (straight segment in u.h.p.), 
t = Re ia (circular segment), 
t = xe i21r (straight segment in l.h.p.). 

The new variables x and a are considered pure real. R is the 
radius of the circular segment of C, and satisfies the inequal­
ities 0< R < 1. The phase factor e i21r assures that the phase 
difference between the integrals along the two straight seg­
ments of C, caused by the cut between them, is properly 
taken into account. 

The integral along the straight segment in the l.h. p. is 
equivalent to that in the u.h. p., differing only in the direction 
of integration and in the phase factor due to the cut. The a 
integral, with limits [0,21T], reduces to an integral with limits 
[0,1T] if the periodicity of the elementary trigonometric func­
tions and the relationship QI(Z*) = Q ;(z) are used. Using 
these simplifications, the integral expression (7) straightfor­
wardly reduces to 

wl(kl ,k2 ;E) = - (uZe2/2kl k2) 

XiII +R"[Re(l2)cot(1TU) + Im(I2)]J, 
where 

II = L dXX,,-1 QI(A -B (1 ~X)2), 
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11 = (" da e'<'" QI [A - Bf(a,R ) 1, Jc, 
A =(kf +k~)l2klk2' B=S/Sklk1 , 

f(a,R) = (R + l/R) cosa + i(R - l/R) sina - 2. 

The integrals II and 12 can be computed easily by stan-
dard numerical methods. Values for the QI functions can be 
obtained using the recursion relation (5). The arguments of 
QI are always real in computing II but are complex in com­
puting 12 , The R parameter should be chosen so that the 
circular segment of the C contour is not too close to either 
the singularity at t = 0 or to the singularities on the unit 
circle. If k I is nearly equal to k2 , then two of the singularities 
on the unit circle are near the C contour's endpoints, and a 
dense grid of points must be used near x = 1 in computing 

II' 

B. Method of angular projection 

The development of the method of angular projection 
begins with the hypergeometric function representation of 
the full amplitude given by Ford. 3 For negative energies this 
representation can be written 

W(kl,k2;E) = (2Ze 2/Srsina) 1m [F(1,O'; 1 +O';eia»),(S) 

where Fis the well-known hypergeometric function and a is 
defined by 

cosa = 1 + (2/S) Ikl - k212 O';;;a';;;1T. 

In the method of angular projection, we use this hypergeo­
metric function representation to compute numerical values 
of W, and then obtain values of WI by performing the angular 
projection integration (4) numerically. 

We must reduce Eq. (S) to a form suitable for numerical 
computation. By substituting the hypergeometric power se­
ries into the equation, we obtain 

(9) 

This equation is not suitable for numerical computation. The 
magnitude of the series terms decreases as A - I for large A, 
so that the series converges far too slowly for accurate term­
by-term summation. Even slight inaccuracies in the W val­
ues can cause serious errors in the higher-l WI values when 
the integration (4) is performed. 

We can convert the series in Eq. (9) to a series in which 
the magnitude of the terms decreases as A - 4 for large A, 
thus obtaining much more rapid numerical convergence. We 
write 

1 1 0' ~ 0" --=---+------
A + 0' A A 2 A 3 A 3(,1 + 0') 

(10) 

Equation (9) then becomes 

W(kl,k2 ;E) 

= (20'Ze2/Sr sina)[S? - O'S~ + ~S~ - IT'Sn, 

where 
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SO = I siMa S; = I siMa . 
3 ). ~ I A 3 ' A ~ I A '(A + 0') 

Only S; must be summed numerically, because S ~ , S ~, and 
S ~ can be summed analytically using the tabulated series4 

{'- siMa _ I( ) 
L ---2 1T - a , 0<a<21T, 
A~ I A 

00 cosAt I -- = pog[2(1 - cost)], 0 < t < 21T, 
A~ I A 

I ~=ir. 
A~I,1 

Clearly, 

S<; = ~(1T - a), 

S~ = (a dt (I cosAt) 
Jo ). ~ I A 

= - ~ i a 

dt log[2(1 - cost)], 

s~ = (" (I cOsAt) 
Jc, A~.I A 

= ("dt[I ~- r'dU(I SiMU)] 
Jo A - I A Jo A ~ I A 

= ladt(ir-~LdU(1T-U») 
= n a(1T - a)(21T - a). 

We thus obtain 

O'Ze
2 

( W(kJtk2;E)= r' (1T-a) + O'[a log2 + Sr(a) 1 
S sma 
+ i ~ a(1T - a)(21T - a) - 20'3 

X I siMa ) (11) 
A ~. I A 3(,1 + 0') , 

where 

L
a 

Sr(a)- dt 10g(1 - cost). 
o 

(12) 

Equation (11) is suitable for use in computing numeri­
cal values of W, which can then be used in performing the 
angular projection integration (4). A large set of values of the 
special function Sr(a) can be tabulated by performing a sin­
gle numerical integration; values to be used in Eq. (11) can be 
obtained from the tabulated values using some appropriate 
interpolation scheme. These values can be obtained with a 
high degree of precision with little difficulty, if both the nu­
merical integration and the interpolation scheme take prop­
er account of the logarithmic singularity at t = 0 of the inte­
grand (12) (see Appendix A). The series in Eq. (11) must be 
summed numerically term by term. Such a numerical sum­
mation can include only a finite number of terms; the contri­
bution of those terms A > ,1c' where ,1c is the cutoff index, 
should be approximated by adding a single correction term 
to the finite sum (see Appendix B): 

{'- siMa ~ siMa cos«,1c + !)a) 
L 3 -L + .' A~ I A '(A + 0') A~ I ,13(,1 + 0') U ~(,1c + 0') sm~a 

(13) 

The expansion (10), which makes possible the reduc-
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tion of the series (9) to a more rapidly converging series, can 
be extended to terms of higher order in u, thus resulting in a 
still more rapidly converging sum over A. However, the re­
sulting formula for W involves special functions defined by 
successive integrations of the special function Sr(a). Each 
such successive integration magnifies the small errors pre­
sent in the original set ofSr(a) values, so that no advantage is 
gained. 

C. Method of separable series summation 

The development of the method of separable series 
summation begins with the well-known Sturmian functions 
expansion of the partial wave amplitude5

: 

w,(k
l 
,k2;E) = I <Pn/(k l '~)<Pnl(k2'E), (14) 

n ~ I + I r n (E) 1 - r n (E)] 

where 

n -, 
u 

A. (k E) - N (E) (Ilk)' 
'I'nl , - nl (fik 2/2Jl-E),+1 

C I + I ( fi k 2/'2Jl + E ) 
X n-I-I fik 2/2Jl-E' 

(15) 

N =ff/2/! . -- , 
(

241 +3 n(n _ I -1 I) )1/2 ( E )(21 +3)/4 

nl (n + l)! 2Jl 

and C ~ ~II_I is a Gegenbauer polynomial. The WI values are 
computed simply by summing the series (14) to a large num­
ber of terms. A limited numerical study of this method has 
previously been reported by Chen and Ishihara.6 

This author wishes to point out that, although the above 
expressions for the Sturmian functions <Pnl appear somewhat 
cumbersome, numerical values of these functions to be used 
in summing the series can actually be obtained very easily. 
The Gegenbauer polynomials satisfy the recursion relation 7 

c~(x) = 1; c~(x) = Ux; 

c~(x) = (lin) [2(n + A -1) x c~ _I (x) 

- (n +U -2) C~ -2 (x)], n> 1. 

This recursion relation implies the following recursion rela­
tion for the Sturmian functions: 

A. (kE)-N (E) (Ilk)' 
'1'1+1,/ , - /+1.1 (fz2k 2/2Jl-E)I+I' 

<PI +2.1 (k,E) = (21 +4) 112 x<PI+I.1 (k,E), 

<pJk,E) = (lIAnl) [2x<Pn _1,/ (k,E) 

-An_I,I<Pn_2,1(k,E)] n>I+2; 

where 

x = (fz2k 2/2Jl + E), 
fik 2/2Jl - E 

Ani = (n + I)(n -I-I) )1/2. 
n(n -1) 

Once the Sturmian functions values for the first two terms of 
the series (14) are obtained, the values of all succeeding 
terms can be rapidly obtained using this recursion formula. 
This recursion formula has in fact been used by previous 
workers. 6 

337 J. Math. Phys .. Vol. 21. No.2, February 1980 

D. Systems of units and normalizations 

Previous papers on two-body Coulomb amplitudes and 
their application to many-body problems differ considerably 
among themselves in both the units systems to which their 
equations are specialized, and in the normalization conven­
tions adopted in defining the partial wave amplitudes. Before 
performing any calculations combining the present work 
with any of this previous work, care must be taken to assure 
that all formulas involved use consistent units systems and 
normalizations. 

All equations in this paper have been written without 
specialization to any system of units. To specialize them to 
atomic units, simply set fz and e 2 equal to unity in all of them, 
and assume that the reduced mass is expressed in units of 
electron masses. 

Some papers use a system of units involving mass­
scaled momenta, defined by p2 = fik 2/'2Jl. The equations in 
this paper can be converted to such a system by replacing 
each wave number k by ('2Jl) 1/2 plfz. Papers using mass­
scaled momenta sometimes further specialize their equa­
tions to atomic units, and sometimes specialize them instead 
to Rydberg units. 

Some papers define the partial wave components VI and 
tl of the potential and of the amplitude in a manner differing 
by a factor of 2 from the definitions used in this paper. This 
difference or any similar difference in normalization conven­
tions causes the multiplicative factors on all angular projec­
tion relations, and on the integral terms of all integral equa­
tions, to differ from the multiplicative factors appearing in 
this paper. This differing of multiplicative factors can be 
used to detect an underlying difference in normalization 
conventions. 

III. COMPARATIVE NUMERICAL STUDY OF THE 
METHODS 

The author has conducted a computational study of the 
three methods described above. This study was conducted in 
order to determine whether the numerical values of 
tl(k l ,k2 ;E), produced by the methods, become stable for 
reasonably small values of each method's "convergence var­
iables"; and to determine whether the methods' relative use­
fulness differs significantly in different regions of the space 
defined by the variables (k I ,k2 ;E). The convergence varia­
bles of each method are: the numbers of intervals NI and N2 
used in numerical evaluation of the integrals II and 12 
(method of contour integration); the number of terms Ac 
included in summing the modified hypergeometric series 
and the number of intervals Na used in numerical evaluation 
of the angular projection integral (method of angular projec­
tion); and the number of terms Nt included in summing the 
Sturmian functions expansion (method of separable series 
summation). The radius R of the circular contour segment is 
an additional computation parameter involved in the meth­
od of contour integration. 

A. Test procedure 

A grid of test points in the space (k I ,k2;E) was selected. 
At each of these points, the values of tu for I = 0 through 
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FIG. 2. The (k , ,k,) plane. Lines 1 and 2 contain the pairs (k , ,k,) at which 
the principal numerical test were conducted. The line k, = k, marks a 
logarithmic singularity in alll,(k I ,k,;E). The coordinates of points a and 
are (1.0,0.32) and (\.0, 0.68), respectively. 

I = 4, were computed by each of the three methods as func­
tions of that method's convergence variables. The maximum 
values used for the convergence variables were 60 for 
NI , N 2 , Ac ' and No, and 200 for Nt. The three methods con­
sume comparable computer times using these maximum 
convergence variables for this entire range of I values. The 
values used for R were 0.2, 0.5, and 0.8. 

Atomic units were used in all test computations. Most 
were performed for J..l = 1.0, E = -0.375, and Z = 1 and 
-1 both. Two sets of pairs (k I ,k2 ) were used. In the first set, 

kl was fixed at 1.0 and k2 took the values 0.01, 0.02, 0.04, 
0.08,0.16,0.32,0.50,0.68,0.84,0.92,0.96,0.98, and 0.99. In 
the second set, the ratio k21kl was fixed at 0.5 and kl took 
the values 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 1.0,3.0,6.0,12.0, 
25.0, 50.0, and 100.0. A few additional computations were 
performed, some for J..l = 0.5, some for E = -0.625 and 
-0.187, and some for a few pairs (k l ,k2 ) lying off the two 

principal sets. These additional computations were used to 
check the general validity of conclusions drawn from the 
basic tests. 

Figure 2 depicts the plane (kl' k\). Because t,(k2 ,k\ ;E) 
= t,(k\ ,k2;E), all tests may be restricted to the region kl 
> k 2 • The two principle sets of test points lie along the two 
dashed lines. The first set (line 1) is used to investigate the 
limiting behavior of the three methods as k2 ---+0 and k2 ---+k I 
for fixed k \ . The second set (line 2) is used to investigate the 
limiting behavior as k I and k2 both ---+0 and both ---+ 00. The 
line k2 = kl marks a logarithmic singularity in t,. 

At each of the principal test points (k\ ,k2 ), the t, values 
produced by the three methods were compared, to deter­
mine which method's results converged most rapidly or least 
rapidly to stable numerical values as functions of the conver­
gence variables. From these comparisons, general conclu­
sions were drawn regarding the method's relative usefulness 
in different parts of the (k I ,k2 ) plane. 

B. Test results 

Figures 3 and 4 illustrates the test results, for I = 1 and 
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FIG. 3. The convergence of II (k , ,k, ;E), for Z = 1, Ii = 1.0, E = ~0.375, 

and (k , ,k,) = (1.0, 0.32). Curves 1,2, and 3, respectively, represent the 
methods of contour integration, of angular projection, and of separable 
series summation. For each curve the abscissa represents N 2 , N u ' and N" 

respectively. For curves 1 and 2, the values of R, N, , and ,( are held con­
stant at 0.5, 60, and 60, respectively. 

Z = 1, at the two points (k l ,k2 ) = (1.0,0.32) and (1.0, 0.68); 
these points are labeled a and b in Fig. 2. Each curve repre­
sents the t \ value, computed by one of the three methods, as a 
function of one of that method's convergence variables. For 
the method of contour integration (curve 1) the abscissa re­
presents N2 ; for the method of angular projection (curve 2) 
the abscissa represents No; and for the method of separable 
series summation (curve 3) the abscissa represents Nt. For 
curve 1, the convergence variable N\ is constant at its maxi­
mum value 60, and the parameter R is constant at 0.5. For 
curve 2, the convergence variable Ac is constant at its maxi­
mum value 60. As mentioned previously, the computations 
by the three methods for the maximum values of the conver­
gence variables consumed comparable computer times; it is 

24 48 

.300 

t, (au) 

.297 

80 160 

Nt 
FIG. 4. The same as Fig. 3, but with (k , ,k,) = (1.0, 0.68). 
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therefore reasonable to plot three curves on one graph for 
comparison purposes even though the three curves' abscis­
sae have different mathematical meanings. 

In Fig. 3, we see that curves 1 and 2 very quickly con­
verge to the same stable value of approximately 0.08901, 
whereas curve 3 oscillates about this value and converges 
very slowly, if at all. In Fig. 4, we see that curve 1 again very 
quickly converges to a stable value, and that curve 3 again 
oscillates about this value of approximately 0.2996. But 
curve 3 now clearly converges to this same value. Curve 2 
also appears to converge to this same value, but only very 
slowly. Thus, for these two examples of the test results, we 
see the following: 

(1) The method of contour integration produces rapidly 
converging results at both point a, near the k2 -+0 limiting 
region, and at point b, near the k2-k] logarithmic 
singularity. 

(2) The method of angular projection produces rapidly 
converging results at point a but slowly converging results at 
point b. 

TABLE II. The same as Table I, but for the method of angular projection. 
Each entry is the number of significant figures in t, judged stable as Na 
varies upward to 60, for a fixed A, = 60. 

k,/k, 1=0 1= I 1= 2 1= 3 1= 4 

0.01 9 8 6 0 0 
0.02 8 6 4 0 0 
0.04 9 7 5 1 0 
0.08 7 7 5 3 0 
0.16 7 7 4 3 
0.32 5 5 4 3 2 
0.50 5 4 3 3 3 
0.68 3 3 2 2 1 
0.84 2 2 1 1 1 
0.92 1 1 1 1 1 
0.96 1 0 0 0 0 
0.98 1 0 0 0 0 
0.99 0 0 0 0 0 
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(3) The method of separable series summation produces 
very poorly converging results at point a but fairly rapidly 
converging results at point b. 

These two examples illustrate a general conclusion 
drawn from an analysis of all of the test results, which we 
now describe. 

The test results were analyzed by first condensing the 
numerical data generated to 36 tables, six examples of which 
are shown here (Tables I-VI). Table I, for example, repre­
sents the test results for the method of contour integration, 
for alII values tested and for all (k] ,k2 ) pairs lying along line 
1 in Fig. 2, for Z = 1, R = 0.5, and for the convergence vari­
able N] held fixed at its maximum value of 60 while N2 is 
varied. Each entry of Table I is the number of significant 
figures, in the numerical value of a particular t,(k] ,k2 ;E), 
judged as having become stable when N2 is varied up to its 
maximum value of60. Table VI, for example, also represents 
the test results for the method of separable series summation, 
for alII values tested and for all (k I ,k2 ) pairs laying along 
line 2 in Fig. 2, for Z = 1. Each entry is the number of signifi­
cant figures judged stable when Nt is varied up to its maxi­
mum value of 200. By studying the 36 tables, general conclu­
sions can be drawn. 

TABLE IV. The same as Table r, but along line 2 (Fig. 2). 

k, 1= 0 1= 1 1= 2 1= 3 1=4 

0.01 8 7 4 1 0 
0.02 7 7 4 0 0 
0.04 6 6 5 0 
0.08 6 6 8 4 1 
0.16 6 6 6 4 3 
0.32 6 6 6 5 4 
1.0 6 6 5 5 6 
3.0 8 8 8 8 9 
6.0 8 8 8 8 7 

12.0 8 8 7 8 7 
25.0 8 6 6 6 6 
50.0 7 7 6 7 6 

100.0 6 4 5 4 5 
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TABLE V. The same as Table II. but along line 2 (Fig. 2). 

k, 1= 0 1= I 1= 2 1= 3 1= 4 

0.01 7 5 6 5 4 
0.02 6 5 5 4 
0.04 6 6 4 4 4 
0.08 6 4 4 4 3 
0.16 6 5 4 4 2 
0.32 5 5 4 3 3 
1.0 5 4 3 3 3 
3.0 5 5 3 3 3 
6.0 5 4 4 3 2 

12.0 5 5 4 3 3 
25.0 6 5 4 3 
50.0 6 6 4 3 

100.0 7 6 4 4 

The results obtained by the method of contour integra­
tion are of comparable precision for R = 0.2 and R = 0.5. 
and of poorer quality for R = 0.8. This result is not surpris­
ing, because for R = 0.8 the circular part ofthe contour (Fig. 
1) passes close to the logarithmic singularities on the unit 
circle. The results converge more rapidly as Nl increases 
than as N z increases; therefore, in comparing the method of 
contour integration with the other methods, we consider pri­
marily its convergence precision as Nz increases. 

The results obtained by the method of angular projec­
tion converge more rapidly as Ac increases than as Na i'.l­
creases; therefore, in comparing this method with the (.ther 
methods, we consider primarily its convergence precision as 
Na increases. 

Consider now Tables II and III. Table II shows that, 
along line 1 (Fig. 2), the method of angular projection in 
general gives good result for k2/kl ,0.5. In the limit k2----+O 
we see that, for I = 0, 1, and 2, the method continues to give 
results accurate to approximately four to eight significant 
figures. For I = 3 and 4 the method deteriorates as kz----+O; 
however, approximate values of f, for very small k2 values 
can be obtained by extrapolation from the values obtained 
for somewhat larger k2' assuming a k ~ dependence. For 
k2 / k 1 > 0.5, the angular projection results deteriorate rapid­
ly. As k2 _k 1 , that is, as we near the logarithmic singularity 
in f" this method becomes useless. On the other hand, Table 
III shows that the method of separable series summation in 
general gives poor results for k2/kl <0.5 and good results 
for k2/kl >0.5. As k2-O, this method's results deteriorate 
rapidly for alII except I = O. As k2 _k 1 , this method contin­
ues to give results accurate to approximately three or four 
significant figures, for alII. Thus, the methods of angular 
projection and of separable series summation can be regard­
ed as complementary: In the region k2/kl <0.5 the former 
produces accurate results, and in the region k2/kl > 0.5 the 
latter produces accurate results. Figures 3 and 4, previously 
discussed, illustrate this general conclusion. 

Consider now Table I. This table shows that the method 
of contour integration produces good results almost every­
where along line 1, showing only some deterioration for 
higher I values as k2 ----+0. This deterioration appears to be 
comparable in seriousness to that shown by the method of 
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angular projection as k2 ----+0. For I = a and 1, this method 
continues to produce accurate results as k2 ----+0, although 
this accuracy is not quite as great as that attained by angular 
projection. As k2 -kl' this method continues to give results 
accurate to approximately six or seven significant figures, for 
alII. Thus, the method of contour integration produces re­
sults superior to those produced by the method of separable 
series summation along that part of line 1 where the latter 
method produces its best results; there is no portion ofline 1 
where the method of separable series summation is not infe­
rior to at least one of the other two methods. In the region 
k2/kl ,0.5, the methods of contour integration and angular 
projection appear equally useful. 

We now consider the tests conducted along line 2 (Fig. 
2). Table IV indicates that the method of contour integration 
remains accurate to four or five significant figures for alII as 
kl and k2 both -00, but that serious deterioration occurs 
for higher I as kl and k2 both ----+0. Table V indicates that the 
method of angular projection remains accurate to four to six 
significant figures for alII both as k land k2 - 00 and as k 1 

and k2 ----+0. Table VI indicates that the method of separable 
series summation deteriorates substantially both as kl and 
k2 - 00 and as k land k2 ----+0, thus confirming the conclusion 
that it is always inferior to at least one of the other two 
methods. 

We thus reach the following final conclusions, which 
are also supported by an analysis of the tabulated test results 
not presented here: 

(1) In the entire region k2/kl < 0.5, the methods of con­
tour integration and of angular projection are approximately 
equally useful; the method of angular projection is probably 
preferable because its results show no deterioration along 
line 2. The method of separable series summation is useless 
in this region. 

(2) In the entire region k2/kl > 0.5, the method of con­
tour integration is clearly superior to both of the other 
methods. 

Figures 3 and 4, previously discussed, illustrate these 
general conclusions. 

c. Mathematical significance of test results 

The failures of the methods of angular projection and of 

TABLE VI. The same as Table III, but along line 2 (Fig. 2) 

k, 

0.01 
0.02 
0.04 
0.08 
0.16 
0.32 
1.0 
3.0 
6.0 

12.0 
25.0 
50.0 

100.0 

1 = 0 

3 
3 
4 
3 
4 
3 
4 
3 
3 
2 
3 

1= 1 

2 
2 
3 
2 
4 

3 
3 
3 
2 
3 
2 

1 = 2 

2 
2 
2 
2 
2 
3 
2 
4 
3 
2 
2 
1 
2 

1 = 3 

2 

3 
2 
3 
3 
2 

2 

2 
2 

1= 4 

3 
I 
1 
I 
2 
2 
2 
3 
2 

2 
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separable series expansion along certain portions of line 1 
can be understood in terms of the methods' basic mathmati­
cal natures. 

The method of angular projection fails for higher I val­
ues as k2 ---+0, and for all I values as k2 _kl . To understand 
these failures, we consider the qualitative behavior of the full 
amplitude W(kl ,k2 ;E), as a function of kl .k2 , in these two 
limits. 

From Eq. (8), we see that W (k l ,k2 ;E) is a continuous 
function ofk2 at k2 = 0, so that, for k2 small but nonzero, its 
dependence on the direction k2 must be very weak. The inte­
grand of the angular projectio~ integral (4) is therefore a 
nearly constant function of k 1 .k2 ; its slight deviations from a 
constant value determine the integral's nonzero value for 
higher 1 values. Even small errors in computing the numeri­
cal values of W will not be small in comparison to these slight 
deviations, and will therefore substantially affect the inte­
gral's value for higher I. The method thus fails for k2 near 
zero, for higher I. 

From Eq. (8), we see that, for k2 = kl' W(kl ,k2;E)isa 
singular function of kl .k2 in the limit as the angle between 
kl and k2 becomes zero. Therefore, for k2 nearly equal to kl , 
the integrand of the angular projection integral (4) is nearly 
singular at kl .k~ = 1, so that the integral cannot be accu­
rately computed. The method thus fails for k2 near k l . 

The method of separable series summation fails as k2 
---+0 for 1 #0. To understand this failure, we consider the 
series (14), and investigate the n-oo behavior of the terms 
for small k 2 • 

From Eq. (15), we see that, for k2 ---+0, the argument of 
the Gegenbauer polynomial C~"=-I/_I becomes -1. The 
values of the Gegenbauer polynomials for arguments of unit 
magnitude are known8

: 

C ~ "=-11 -I ( -1) = ( -1) n - 1 -I C ~ "=-11 -I (1) 

= [( -1) n -1-1/(21 +1)! ] 

X [(n + l!)/(n -I-I)! ]; 

furthermore, 

(n + I)!/(n - / -1)- n2/ + 1 as n_oo. 

The factors involving Yn(E) then introduce an n -2 depen­
dence for large n, so that as n_ 00 the magnitude of the terms 
of the Sturmian functions expansion behaves as n2/

-
1 

• Thus, 
for / = 0, the series will converge numerically for small k2 , 
although rather slowly. But for / #0 the series will fail to 
converge numerically. 
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APPENDIX A: NUMERICAL VALUES OF Sr(a) 

To tabulate accurate values ofSr(a), write the inte­
grand (12) as a sum of two terms: 
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10g(1 - cost) = 210gt + log[(l - cost )/t 2]. 

The first term, containing the logarithmic singularity, can be 
integrated analytically. The result is 

ra (1 - cost) Sr(a)=2a(loga-l)+ Jo dtlog (2 . (16) 

The remaining term must be integrated numerically. Be­
cause this integrand has no singularity at ( = ° the integra­
tion can be accurately performed using some standard meth­
od such as Simpson's rule. 

The numerical value ofSr(a) for some arbitrary a can 
be obtained from the tabulated values by applying an appro­
priate interpolation scheme to those values tabulated at 
points lying near the a of interest. The author's test compu­
tations showed that, for a > 1T /20, a simple polynomial inter­
polation scheme applied directly to the tabulated Sr values 
produces satisfactory results. The author's interpolation 
scheme consisted of fitting a third order polynomial to the Sr 
values tabulated at the four points nearest the a of interest. 
The author tabulated the values ofSr at the endpoints of 400 
intervals of length 1T /400, covering the interval [0, 1T]. 

For a < 1T/20, such an interpolation scheme produces 
unsatisfactory results. The function Sr(a) has an infinite de­
rivative at a = 0, and no polynomial fit applied directly to 
the tabulated Sr values for small a can adequately mimic this 
infinite slope feature of the function. To obtain Sr(a) for 
small a, the two portions (16) of the function Sr must be 
treated separately. The first portion is known analytically; 
and the second, because it does not exhibit the infinite slope 
feature, can be accurately treated with a simple polynomial 
interpolation scheme. 

APPENDIX B: NUMERICAL SUMMATION OF CERTAIN 
SERIES 

Consider two series, of the forms 

C" _ ! cOMa 
n - A~I An-I(A+a)' 

S" = ~ siMa . 
n l~1 A n -I (A + a) 

A series of the latter form, with n = 4, must be summed 
mathematically in computing Coulomb amplitude values by 
the method of angular projection. To study the numerical 
convergence properties of such series, and to justify use of 
the correction term in Eq. (13), we first note that the two 
series are the real and imaginary parts of a series 

! z(A). 
A=I 

Let Ac denote a cutoff index. We denote the series truncated 
after Ac terms as 

A,. 

E(Ac)= L z(A). 
A~I 

We wish to determine a complex correction terms c(Ac) such 
that E(Ac) + c(AJ-E ~ much more rapidly as Ac _ 00 than 
does E(Ac). 

WeregardE~ and allofthez, c, and Eas vectors lying in 
the complex plane, and study their geometric properties. 
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FIG. 5. The geometric construction of the complex correction term C(AJ. 

The labeled points are: I, c(A, - I); II, c(AJ; III, c(A, + 1); and IV, E:;. 

The labeled vectors are: I, Z(A,.); 2, Z(A,. + 1); 3, C(A,. + 1); and 4, C(A,). The 
curve represents the spiral path along which the points c lie. The segment 
shown is considered approximately circular, with the point IV lying at its 
center. 

The most important properties are: For all A., the angle be­
tween vectors z(A. ) and z(A. + 1) is exactly equal to a, and, for 
sufficiently large A., the ratio of these vectors' magnitudes 
becomes arbitrarily close to unity. Since each €(A.c) is the 
vector sum of the first A.c vectors z(A. ), these properties im-
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ply: For a sufficiently large minimum A. ;, the chain of points 
€(A.c) for A.c > A. ; lies on a spiral path, which very slowly 
spirals inward around the point E ~. For any A.c > A. ;, the 
points € lying near €(A.c) lie approximately on a circle, the 
radius of which very slowly diminishes to zero as A.c -+ 00. 

(This circle's radius is initially much smaller for n = 4 than 
for n = 1, but in either case this radius diminishes to zero 
very slowly as A.c -+ 00 .) The point E ~ lies very near the cen­
ter of this circle. We therefore choose c(A.c) as a vector 
which, when added to €(A.J, reaches the point lying at that 
center. 

Consider Fig. 5. The points €(A.c - 1), €(A.J, €(A.c + 1), 
and E ~; and the vectors z(A.J, z(A.c + 1), c(A.J, and 
c(A. c + 1) are shown. Also shown is a part of the spiral on 
which the points € lie. By vector addition, 

c(A.J = z(A. c + 1) + c(A.c + 1). 

Because of the approximate circular geometry, 

z(A. c + 1) :::::;z(A. c ) eia
, 

c(A.c + 1):::::;c(A.c) eiu
. 

Therefore, 

c(A.c):::::; [z(A. c ) + c(A.J] eia
, c(A.J:::::;z(A.J/(e- ia 

- 1). 

By taking the real and imaginary parts of this c(A. c) we finally 
obtain correction terms to be used in truncating the series 
C~ andS~: 

A, cOMa sin«A.c + !)a) 
C~:::::;L---- , 

A~l A. n-l (A. +0) U~-I(A.c +o)sin!a 

A, sinAa cos«A.c + !)a) 
S~:::::;~ ----+ . 

A~I A. n -I (A. + 0) U ~ -I (A.c + 0) sm!a 
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Using the decomposition of the curvature tensor by means of the dual * operator, several useful 
expressions for characteristic classes in some kinds of Einstein manifolds are obtained. 
Consequently, some topological restrictions of the underlying manifolds are considered. 

1. INTRODUCTION 

The most intersting Riemannian manifolds in physics 
have dimension 4. In this case the duality * operator plays an 
important role. The Riemannian curvature tensor can be 
decomposed by means of the * operator. Using such a de­
composition, it has been shown that there exist several in­
equalities between the Euler number, Pontrjagin number, 
and the Yang-Mills functional on the manifolds. 1 This paper 
discusses some important special cases. For Einstein­
Kahler manifolds and half-conformally flat Einstein mani­
folds, which are interesting to the gauge theory,2 we obtain 
several useful expressions for the Euler class and Pontrjagin 
class, from which some topological restrictions of the mani­
folds are obtained. In particular, H. Donnelly's inequality3 

for the Einstein-Kahler manifolds is a consequence of these 
expressions. 

2. DECOMPOSITION OF THE CURVATURE TENSOR 
AND CHARACTERISTIC CLASSES 

Let M be an oriented Riemannian manifold of dimen­
sion 4, and let R and A P be the curvature tensor and the 
bundle of exterior p-forms of the manifold M, respectively. 
The Riemannian curvature tensor defines a symmetric 
transformation in A 2 given by 

1 
R (ehAeJ = - I Rhijk(ejAek) , 

2 j.k 

where {e j I is a local orthonormal basis of I-forms. At any 
point xEM such linear transformations form a vector space 
with inner product given by (R.R') = trRR'. 

The duality operator *:A 2-+A 2 is defined by 

aA *{3 = (a, {3)il, 

where a, fJEA 2, (a, fJ)is the inner product on 2-forms, andil 
is the volume form. 

As is well known, the bundle A 2 splits a direct sum 

A 2 = A 2+ Ell A 2~ , 

where A 2=j= are the + I eigenspaces of the * operator. 
For the sake of the simplicity we denote 

*R (ehAe;) = ~ I R hijk *(ejAek) = ~ I R ;'~jk(ejAek)' 
2 j,k 2 j,k 

Setting 

R tijk = R jthi , 

we define 

(2.1) 

R *(ehAe;) = ~ I R tijk(GjAek) , 
j,k 

*R *(ehAeJ =! I R tjk(ejAek) , 
j,k 

Moreover, we define 

R ++ = !(R + R *. + R .* + R **) , 

R" = !(R - R *. - R .* + R **) , 

R +- = !(R + R *. - R'* - R **) , 
(2.2) 

R -+ = !(R - R *. + R'* - R **) . 

ltiswellknownthatR +. = OisequivalenttoR -+ = OandMis 
a Einstein manifold itfR +- = 0 1 which is the case of our con­
sideration through this paper. On the other hand, the curva­
ture R can be written as a block matrix relative to the decom­
position A 2+ Ell A 2~ : 

~~ :,), 
where IA +12 = IR ++12, IA -1 2 = IR "12, and 
IB 12 = IB TI2 = IR +-1 2, Moreover, we have trA + = trA' 
= As, where s is the scalar curvature, which is a constant in 

an Einstein manifold, and 

W+ = A + _ _ s_ id 
12 ' 

W- = A - _ _ s_ id 
12 ' 

(2.3) 

W= W++ W-, 

where id denotes the identity transformation and W is the 
Weyl conformal curvature tensor. 

We define the manifolds with W+ = 0 or W- = 0 as the 
half-conformally flat manifolds. 

From the above relations the Euler characteristic 
class4

,1 of M can be expressed as 

1 
32~ I Ei .... i.R (ei.AeiJAR (ei,AeiJ 

and 

= _1 (IR ++12 + IR "12 -21R +-12)il 
8~ 

_1_ (I W+12 + I W-1 2 + L -21R +-I)il . 
8~ 24 

Similarly, the first Pontrjagin class4
,1 is 

(2.4) 

(2.5) 
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1 I .. --=:2 8';'~' R (e,. AeJ. )AR (e Ae. ) 81T- I ~ I I 'l Jl 

= _1 (IR ++12 _ IR --1 2)n 
4rr 

_1 (I W+12 _ 1 W-1 2)n 
4rr . (2.6) 

As a consequence, Eqs. (2.4) and (2.6) immediately give 
Hitchin's inequality about Einstein manifolds 1P1/2<X.5 

As is known the Yang-Mills functional of Mis 

YM(M) = L IR 12n. (2.7) 

Though this paper, if we do not assume a manifold to be 
compact without boundary, but assume that the Yang-Mills 
functional is finite, then X and p lose original topological 
meanings, but integral inequalities in the paper still hold. 
They can be considered as constraints on the Riemannian 
metrics. 

3. EINSTEIN-KAHLER CASE 

Let M be a Kahler manifold. 
Lemma 3.1: For the Kahler manifolds 

s 
0 0 

6 

W+= 0 
S 

0 
12 

0 0 
s 

12 

(3.1) 

Proof: We take a Hermitian basis el, Je l, e2, Je2,4 where 
J is the canonical almost complex structure. From this Her­
mitian basis I elAJe\ + ezAJe2, e\Ae2 + JezAJe l, 
elAJe2 + Je 1Ae2 } form a basis for A 2+ • Using the properties 
about Kahler manifold,4 we have 

and 

Re,AJe, + e,AJe, = Ric·J 

by direct computation. Thus, Eq. (3.2) gives 

= (Ric·J, elAJe\ + ezAJe2) 

= (RicJ(el),Je\) + (RicJ(e2),JeZ) = ~, 
2 

= (RicJ, elAJe2 + JezAJe l ) 

= (RicJ(e\), e2) + (RicJJ(e2)' Je l ) = O. 

Similarly, 

(R e, AJe, + e,AJe" e, AJe, + Je, Ae, ) = 0 . 

So we have 

A'~ rt ~ ~) 

(3.2) 

(3.3) 

From Eq. (3.3) we obtain Eq. (3.1). Equations (2.5), (2.6) 
and (3.1) give the following: 
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Theorem 3.2: Let Mbe a four-dimensional Einstein­
Kahler manifold. Then its caracteristic numbers have the 
following relations: 

(i)X(M) = 8~L(IW-lz+ ;~)n, 

(ii)p(M) = _1 ((~ _I w-1 2 )n 
4rr JM 24 ' 

(iii) (M) + ~ (M) = s2Yol(M) 
X 2 P 26rr' 

(iv) X -p = 8~ fM IW-1 2n, 

(v) -2X<p<X, 
where -2x = p holds iff s = 0 which is equivalent to 
W+ = 0 or R ++ = 0, andp = x holds iff W- = O. So both are 
half-conformally flat manifolds. It is well known that the 
first one is the K3 surface if it is simply connected, and the 
second one has constant holomorphic section curvature 
which we shall show later. 

Remark 1: ifs#O, Yol(M)< 00. Ifs = 0, 
X (M) + y.,(M) = 0 holds also 

Remark 2: (V) have been obtained by H. Donnelly in a 
different approach3

• 

If we employ the normal form of the curvature tensor 
for the four-dimensional Einstein manifold6

, then we can 
express characteristic numbers in other forms. This theorem 
states that there exists an orthonormal basis such that rela­
tive to the corresponding basis {e IAe2, elAe3, elAe4, e0e4, 

e4Aez,e2Ae3 } of A 2, the matrix of curvature components has 
the form 

[R] = ~ :), 

0) (Ill o and B = 0 

,13 0 

o 

where any 2-planes, which form the basis of A 2, are critical 
points for sectional curvature function. The relative critical 
values are AI' Az, and ,13 with AI + ,12 + ,13 = s/4. The first 
Bianchi identity implies III + 112 + 113 = O. From now on we 
call such an orthonormal basis of A z to be a normal basis, 
from which we take the basis {elAez + e0e4' 
elAe3 + e4Ae2' elAe4 + eZAe3, elAez - e0e4' 
elAe3 - e4Ae2 , e lAe4 - ezAe3 J relative to the decomposi­
tion (2.3). It has a more explicit form 

W-= 

A+" __ s_ 0 0 
1,..1 12 

o 

o o 

o 

S 
,12 -1l2 - -

12 

o 

o 

o 

o 

S 
A3 -1l3-

12 (3.4) 
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and obviously B = O. 
Lemma 3.3: There exists a Hermitian basis {e2, Je l, e2, 

Je2 J in an Einstein-Kahler manifold such that the curvature 
tensor has the normal form in the following basis: {eIAJe l, 
elAe2, e1AJe2, e0Je2, Je0Jel' Je 1Ae2}, 

Proof: According to the fact that the 2-plane P is a criti­
cal point of R iff RP =).P + fLP 1, 6 if P is a critical 2 planes, 
and so is JP. Therefore, there is either P = ± JP or P 1 

= ± JP, which correspond to PrVP #r/J or PrVP = r/J, re­
spectively, where ± means the same or opposite orientation 
of the planes. For any normal basis PI = elAe2, P2 = elAe3, 
P3 = elAe4, Pi = e0e4' P~ = e~e2' P~ = e0e3' it is im­
possible that JPj = ± P;, i = 1, 2, 3. Otherwise, 
J(P l nP2)C ±Pin±P~ = {e4J,namely,Je l = ±e4·Simi­
lariy, we have Je l = ± e2, which is contradictory. There­
fore, there exists a Pj such that JPj = ± Pj • It means P j and 
P; are holomorphic 2-planes. (Maybe there is a need to 
change the orientation of the planes.) Without loss of gener­
ality, we assume them to be PI and Pi. We take that el and 
Je l span PI' e2 andJe2 span Pi . So we obtain such a Hermi­
tian basis that elAJe l , e l Ae2, e0Je2, Je0 Je l are critical 2-
planes. By the symmetry of the Riemmanian curvature ten­
sor elAJe2 and Je l Ae2 are critical 2-planes as well. 

As a result, in any Einstein-Kahler manifold one can 
choose a Hermitian basis lei' Je l , e2, Je2 J with critical 2-
planes of the section curvature function elAJel, e0Je2' ... 
Equations (3.1) and (3.4) give 

I W-1
2 

= (U I - ~ r + (U 2 - lS2 r + (U 3 - lS2 r· 
(3.5) 

So we obtain the result as follows: 
Theorem 3.4: Let Mbe a four-dimensional Einstein­

Kahler manifold, then we have 

p(M) = 4~ L { ;: -( U I - ~ y + ( U2 - t2 Y 
+ ( U3 - t2) }n , (3.6) 

where s is the scalar curvature in M; n is the volume form of 
M; ). I' A 2' A 3 are critical values of section curvature functions 
and AI is the holomorphic sections curvature also. 

Remark 1: Using the relations between section curva­
tures and holomorphic section curvatures, we can evaluate 
the upper bound of the Euler number and the lower bound of 
the Pontrjagin number, if we give bounds to holomorphic 
section curvatures. 

Remark 2: W- = 0 iff AI = s16, A2 = s/24, A3 = s/24. 
If we notice Eqs. (3.1) and (3.4) again, we have 

fLl = s/12, fL2 = - s/24, fL3 = - s/24. Consequently, its 
holomorphic sections curvatures equal a constantsl6, which 
are already obtained by Gu Chaohao and Hu Hesheng. 7 
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4. HALF-CONFORMALLY FLAT EINSTEIN CASE 

Recall that conditions for half-conformally flat Ein­
stein are W- = o (or W+ = O)andR +- = O. We have thefol­
lowing results: 

Theorem 4.1: Let Mbe a four-dimensional half-confor­
mally flat Einstein manifold. Its characteristic numbers have 
relations 

(i) X(M) = 8~ fM (I W+12 + ~: )n 
X (or X(M) = 8~fM(IW-12+ ~:)n) 

(ii) 

p(M) = 4~ L I w+1
2n (or p(M) = - ~ fM I w-1 2n ) 

( ... ) (M) _ IP(M) I rVol(M) 
111 X - -2-+ 26.3r . 

Proof: (i) and (ii) can be obtained from Eqs. (2.5), (2.6), 
and the conditions for half-conformally flat Einstein mani­
folds. (iii) follows from (i) and (ii). 

If we name the half-conformally flat Einstein manifolds 
with S # 0 and W # 0 as nontrivial half-conformally flat Ein­
stein manifolds, we have the following corollary. 

Corollary 4.2: There are no nontrivial half-conformally 
flat Einstein metrics with the global topology of S 4, S 2 X S 2, 

andK3• 

Proof: According to the Theorem 4.1, S #0 is equiv­
alent to X> IP I 12 and W # 0 is equivalent to p(M) # 0 from 
the facts that p(S4) = p(S2 X S2) = 0, P(K3) = -48 and 
X (K3) = 24; hence, we obtain the conclusion. 

If we employ the normal form of curvature tensor for a 
four-dimensional Einstein manifold, we have another ex­
pression for characteristic numbers. W- = 0 gives Aj - fLj 
= s/12, so we have 

Substituting Eq. (4.1) into expressions for the Euler number 
and the Pontrjagin number, we get 

X(M) = 8~ fJ(u l - ~Y + (U 2 - ~r 
+ ( U 3 - ~ Y + ~ ]n, 

p(M) = 4~ fJ (U I - ~ Y + (U 2 - ~ r 
+(u3 - ~y]n. 

Ifwe assume that AjAj >0, ij = 1,2,3, we obtain then 
2 

0<IW+12<~. 
6 

Theorem 4.1 and inequality (4.3) give 

s3vol(M) (M) 5s2vol(M) 
26.3r <X < 26.3r 

and 

Y.L. Xin 
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(4.5) 

so we have 

o p(M) s2vol(M) (M) 5·s2vol(M) 
< ~ < 26.3r <X < 26.3r 

For W+ = 0 we can obtain similar results. We summarize the 
results as follows: 

o IP(M)I s2vol(M) (M) 5.s2vol(M) 
< -2-3- < 26.3r <X < 26.3r . (4.6) 

Theorem 4.3: Let Mbe a four-dimensional half-confor­
mally flat Einstein manifold with nonnegative (or nonposi­
tive) section curvatures. Then its characteristic numbers, 
scalar curvature, and volume satisfy inequality (4.6). 

For CP2 with the Fubini-study metric, which is a non­
trivial half-conformally flat Einstein manifold, we have 
p = 3, x = 3, s = 24, Vol(cP2) = r12, which obviously sat­
isfy inequality (4.6). It is not known whether there exist any 
other nontrivial half-conformally flat Einstein manifolds ex-
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cept the Einstein-Kiihler manifolds with constants holo­
morphic sectional curvatures. 
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The e~uilibrium conditions of a relativistic fluid with nonzero viscosity and heat conduction 
coe~clents are k~own to redu~e to .Ei~stein's equations for a barotropic perfect fluid in rigid 
motion. We consider here the hneanzatlOn of these equations on a static spherically symmetric 
back~round and show that the solution space is three-dimensional (parametrized by the angular 
velocity vecto~, for example), provided the exterior vacuum region is asymptotically Euclidean 
and the equation of state p = p(P) (satisfying P'2P '20 and dp/dp>O) is fixed, as well as the 
central v.alues of the pressure and the gravitational potential. In the exterior region this solution 
agrees with the Kerr solution, linearized on the Schwarzschild background. This result is the first 
step ~owards p~o~ing a. certai~ uniqueness of the possible equilibrium configurations of slowly 
rotatmg relativistic flUIds. It IS obtained using invariantly defined global conditions without 
assuming the existence of particular coordinate systems. ' 

1. INTRODUCTION 

We begin in this paper a mathematical analysis of the 
set of possible equilibrium configurations of a slowly rotat­
ing (simple, thermodynamic) relativistic fluid body sur­
rounded by vacuum. 

Slowly rotating relativistic stars have been extensively 
discussed during the last decade, but mainly from an astro­
physical point of view. l Our objective is to extend the classi­
cal mathematical theory of the equilibrium configurations of 
nonrelativistic self-gravitating fluids 2 to Einstein's theory of 
general relativity. The main tool in the Newtonian case is the 
classical potential theory which does not generalize easily to 
Riemannian manifolds. On the other hand, for the station­
ary vacuum equations in general relativity, together with the 
boundary conditions of asymptotical flatness and regularity 
at a horizon, one has the uniqueness theorems for black holes 
of Israel, Carter, Hawking, and Robinson. 3 The situation is 
considerably more complicated if sources are present. Nev­
ertheless, if the equation of state is given and fixed and the 
field equations are supplemented by the conditions for rigid 
motions, one obtains a system of equations whose lineariza­
tion may be expected to be elliptic, once the coordinate free­
dom is factored out. The set of solutions of these linearized 
equations together with appropriate boundary conditions 
will then be finite-dimensional. 

Of course, this reasoning is very heuristic and only a 
very general guideline. Proving that there exists a solution to 
the linearized system does not guarantee the existence of a 
solution to the nonlinear equations (it could be linearization 
instable4

). Nor does uniqueness of the solution to the linear­
ized system imply uniqueness for the nonlinear case (there 
could be bifurcation points). However, the general relativis­
tic case is less degenerate than the Newtonian one, so there is 

')Partially supported by the National Sciences and Engineering Research 
Council, Grant No. A8059. 

more hope of proving that there exists a finite-dimensional 
family of slowly rotating configurations with a given equa­
tion of state. (In the Newtonian case elliptic configurations 
with constant density have received by far the greatest atten­
tion, l but both these special assumptions do not make much 
sense in general relativity.) For static (nonrotating) cases the 
result is intuitively obvious: The equilibrium configuration 
must be spherically symmetric. But while a mathematical 
proof exists for the Newtonian case,6 it is not yet complete for 
the general relativistic case. 7-9 

In this paper our aim is quite modest. We consider the 
linearized equations on the static spherically symmetric 
background, where they simplify considerably. This allows 
us to show that for a fixed equation of state and fixed central 
values of the gravitational potential and pressure the space of 
solutions is three-dimensional and can be thought of as para­
metrized by the angular velocity vector. This result is ob­
tained by means of elementary estimates very similar to 
those used in Ref. 8. 

In the rest of this section we will make our assumptions 
more precise and outline the method used. We consider a 
simple relativistic fluid with viscosity and heat conduction, 
i.e., we assume that there exists a timelike vector field u a and 
a matter (baryon number) density n satisfying lO 

VI'(nul') =0, (1.1) 

as well as a specific thermal energy E, specific entropy s, 
thermodynamic pressure p, and temperature T (> 0) related 
by 

dE= Tds+pn -2dn. (1.2) 

The stress-energy tensor is assumed to be of the form 

Taf3 = puauf3 + 2u(aqf3) + (p _ ;f) )(g'-f3 + uau(3) _ 1f'i3, 

(1.3) 

wherep: = n(1 + E) and f): = Vl'ul' (expansion rate), and 
where the heat flow vector q a and the shear stress tensor 1T af3 
are orthogonal to ua and of the form 
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1Tap = 2rWaP, (1.4) 

qa = _ K(g"1' + uaul')(al' T + Tu
ll

)(.: = uI'V,'). (1.5) 

Here uap : = V(aup) - !(}(gap + uaup) + u(aup) is the 
shear deformation rate. Thermal equilibrium is then defined 
by the condition that 

V I't' = 0 (1.6) 

for the entropy flux vector t': = nsul' + T - ir/'. 
Now Eqs. (1.1)-( 1. 6), together with the conservation 

law 

V I' T~ = 0, (1.7) 

and the assumptions that the shear and bulk viscosities 11 and 
{; as well as the heat conductivity K are all strictly positive, 
are known11 to imply that 

(i) the Lie derivative with respect to () a: = T - iUa of 
the metric gaP and all thermodynamical quantities vanish, in 
particular the motion of the fluid is rigid (uap = 0 = ()); 

(ii) the heat flux q a vanishes; 
(iii) the equation of hydrodynamical equilibrium (mo­

mentum balance) is equivalent to 

Tdp = (p + p)dT. (1.8) 

From (1.2) and (1.8) it follows, moreover, that the fluid is 
barotropic [with an equation of state of the formp = p(p), 
say]. Properties (i) and (ii) of a fluid in equilibrium can also 
be derived from relativistic kinetic theory.12 

By (i) the space-time region occupied by the fluid is 
stationary. It would seem reasonable that for an isolated 
equilibrium fluid in empty space the space-time region out­
side the material must also be stationary. But this is not easy 
to prove rigorously and the result would depend crucially on 
the asymptotic conditions imposed. On the other hand, if 
one assumes the space-time to be stationary a priori (with 
timelike Killing vector field Sa, say) then the matter region 
is either static «(}a is hypersurface orthogonal and propor­
tional to s a) or () a and 5 a are non parallel commuting Kill­
ing vector fields, which means that this region of space-time 
is axisymmetric. Lindblom13 has shown that one can extend 
() a to a Killing vector field in the vacuum region near the 
boundary of the fluid and can thus argue that, with reason­
able asymptotic conditions, the whole space-time must be 
axisymmetric. We will not assume global axisymmetry, 
however, since it does not lead to any major simplification in 
our approach. 

We therefore consider an equation of state p = p( p) 
given and propose to study the set f§ of all globally station­
ary and asymptotically Euclidean space-times supporting a 
perfect fluid, TaP = (p + p)uaup + pgaP' in a spatially 
compact region B such that the scalar T, defined on B by 
(1.8) (up to a constant) makes () a = T - iU

a into a Killing 
vector field. The conjecture is that this set can be described 
by a finite number of parameters (at least locally, i.e., in a 
neighborhood of the spherically symmetric static solutions). 

The paper is organized as follows. In Sec. 2 we define 
globally stationary space-times and then write the field 
equations and equilibrium conditions in terms of the three­
dimensional quotient geometry consisting of a Riemannian 
metric r ij' a vector field h i (related to the angular momen-
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tum), and a scalar field U (the gravitational potential). This 
formalism goes back to Lichnerowicz14 and our version is 
closest to the one of Ehlers. 15 The vector field hi is divergence 
free and its curl is a kind of mass current so that it behaves in 
most respects like a magnetic field. Our derivation of these 
three-dimensional equations uses the global theory of con­
nections,16 but this argument need not be followed in detail 
for an understanding of the remainder of the paper. 

In the static case (characterized by h i O¢::::=:?() i 0) it 
follows that all thermodynamical quantities are functions of 
U only, in particular the pressure, so that the surface of the 
fluid coincides with an equipotential surface that will be to­
pologically spherical. For configurations close to spherically 
symmetric ones it is then very convenient to study the family 
of two-dimensional geometries of these equipotential sur­
faces since one can use mathematical results that hold only 
for compact manifolds. We choose to use this approach also 
in the stationary case, although it is much less convenient 
since p is no longer a function of U only. Using another glo­
bal assumption (namely that there exists a (}-invariant 1-

form a such that a(ia,] = Eijkh k) one can construct a modi­
fied potential Ueff on whose level surfaces p will be constant. 
But this effective potential satisfies much more complicated 
equations and can only be extended into the vacuum region if 
global axisymmetry is assumed a priori. Moreover, its level 
surfaces near infinity degenerate into cylinders, rather than 
remaining topological spheres. 

In Sec. 3 we translate the field equations and equilibri­
um conditions into a set of equations for quantities defined 
on a family of2-manifolds, parametrized by U. (We assume 
that U has only one critical point at the center so that all 
equipotential surfaces are diffeomorphic to 2-spheres.7.8) 

These equations are linearized on the spherical back­
ground in Sec. 4, where we also establish what constitutes a 
physically nontrivial deformation, namely one not due to 
coordinate transformations. 

In Sec. 5 we show that the solution space of this linear 
system is three-dimensional for an arbitrary equation of state 
p = p(p) withp>p>O (Hawking's dominant energy condi­
tion 17) and dp/ dp > 0 everywhere. This is achieved by exactly 
the same method as in Ref. 8 since on the spherical back­
ground the stationary case reduces to a large extent to the 
static one. We find, not surprisingly, that the only quantity 
that does not vanish to first order on the spherical back­
ground is h i. Moreover, 8h i in the vacuum region is exactly 
of the same form that one obtains by linearizing the Kerr 
solution on the Schwarzschild background. 

The equations for 8h i can be solved numerically quite 
easily for any explicitly known static and spherically sym­
metric background solution. As an example we give in Sec. 6 
the results for the case of the interior Schwarzschild and one 
of the Tolman l8 solutions. 

2. GLOBALLY STATIONARY SPACE-TIMES 

In the entire paper we assume for simplicity that all 
manifolds and tensor fields are C = except at the (C~) 
boundary of the region occupied by matter. We shall call 
such tensor fields regular. Our other basic assumption is that 
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the space-time (M,g) is globally stationary, i.e., that there 
exists a one-dimensional isometry group whose orbits are 
timelike submanifolds diffeomorphic to JR and whose gener­
ator is therefore an everywhere timelike vector field 5 tan­
gent to these orbits. Let 

e2U = - g( 5,5) (2.1) 

so that 5 (U) = ° and U is a regular function on M. 
We assume that the set of all orbits .I has a manifold 

structure such that the canonical projection rr: M-+.I is Coo. 
This is the case iff for all X o E:M there exists a neighborhood 
V3xo that is intersected by each orbit in at most one con­
nected segment. 19 Thus M is a principal fibre bundle over .I 
with structure group (JR, + ). 

We orthogonally decompose TxM into a one-dimen­
sional vertical subspace Vx parallel to 5 and a complemen­
tary horizontal subspace Hx by writing TJETxM as "I = "1°5 
+ ii with "10 = e - 2Ug(TJ,5). This decomposition defines a 

connection since it is invariant under the group action of 
(JR, + ).16 It can be equivalently characterized by a connec­
tion form, i.e., in this case a real valued I-form a that satisfies 

(i) Y~a = 0, (ii) a(Xx) = ~XxEHx' (iii) a(5) = 1. 
(2.2) 

These equations define a uniquely if the horizontal subspace 
is given. The curvature form H associated to the connection 
form a is then H = da + a 1\ a = da and H = rr* if for a 
unique 2-form if on.I. Similarly we have U = rr* fJ. 

We define a Riemannian metric r on.I by 

(2.3) 

for any XErr - \x), where TJ,;ETxM are the unique horizon­
tal lifts of ii,tETx.I, respectively. Then we find 

(2.4) 

We now drop the tilde and consider only the three-geome­
tries (.I,y,a,U) assumed globally defined and e "', except at 
the star boundary, with Y a positive definite Riemannian 
metric, a a smooth connection form on an JR-principal bun­
dle over.I, and UEe 00 (.I,JR). Note that there is no reason for 
the closed 2-form H to be exact. 

On a local neighborhood of xEM there exist coordinates 
«(,x) = X a such that 5 = at, i.e., Y 5g = ~tga/3 = 0. 
Letting 

gOk = - e2Uak , gk/ = e- 2Uyk/ - e2Uak a/, 

we have that 
(2.5) 

a=dt+akdx\ Y=Yk/dxk®dx', Hij:=2a[iaji' (2.6) 

We now use such local adapted charts to derive the three­
geometry formulas. First we observe that for any vector field 
"I such that .5t' 5"1 = 0, "I ° = g(g,TJ) and TJiai are a scalar and 
vector field, respectively, on.I. By writing all the tensorial 
equations with the ° index lowered and the Latin indices 
raised, the ak does not appear except through Hij' We use Y ij 
to lower and raise all Latin indices. 

Einstein's equations for a perfect fluid, 

4Ra/3 - (!) 4Rga /3 = Ta/3 = (p + p)T 2eae/3 + pga/3' 
(2.7) 

then become in the three-dimensional formulation 
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AU: = yJVAU = M _!e4Uh 2 + (p + p)e- 4uT 2e 2
, (2.8) 

~JkVj(e4Uhd = 2(p + p)e - 2UvTe i, (2.9) 

3R ij = 2yrarUyJsas U + !e4uh ih J + (p + p)e -4U T 2e ie j 

_ [2pe-2U + (p +p)e-4U T 2e 2 ]yl, (2.10) 

h i Vk h 2 h ih j 2 e ie j where =!~ ~k' =Yij ,e =Yij , 
M = !(p +3p)e -2U, and v = - uo > ° so that v 2 = e2U 
+ T 2() 2. On the other hand e a is a symmetry of the space­

time metric and all thermodynamic quantities iff (for 
() = e ia;) 

Y e U = 0, !.t' e Y = 0, !f e p = !.t' e p = !f e T = 0, 
(2.11) 

and 

e.JH + d(vT -'e- 2U
) = 0, (2.12) 

which implies that 

.2"eH = d(e...JH) + ().ldH = ° whence .2"eh = 0. 
(2.13) 

Since H is closed we also have 

Vrh r = 0. (2.14) 

It can be shown that (M,g) is static iff H =0. Then (2.9) 
implies e i = 0 and the field equations reduce to those in Ref. 
8. 

We assumed M to be COO and the metric to be regular, 
i.e., Coo except at the star boundary where we now require it 
to be e' and piecewise e 3 (i.e., second and third derivatives 
have finite limits on both sides of the hypersurface.)14 We 
also assume 5 to be regular and Co at the boundary. Togeth­
er with the Killing equations this implies it is e ' at the 
boundary. Hence U and Yij are eland piecewise C 3; h i and 
Ji U are CO and piecewise e 2 while 3Rij may have ajump 
singularity. As in Ref. 8 we assume the space-time to be 
asymptotically Euclidean in the sense of Lichnerowicz. 14 In 
terms of the 3-geometry this means 

(i) there exists a compact Kc.I and a diffeomorphism 
¢>:.I '\K-+JR 3'\B, where B is a closed ball centered at the 
origin; 

(ii) with respect to the standard coordinate system in JR 3 

Yij = 8ij + O(/x/- I), JkYij = Of/xl - 2), 

U=O(\x\-'), J k U=O(\X\-2), (2.15) 
3 

h i =O(\X\-2), where \X\2= L (xy. 
i= 1 

3. (2 + 1)-DIMENSIONAL FORMALISM 

In this section we rewrite our equations in terms of the 
two-dimensional geometry of the equipotential surfaces 
(which are all Riemannian 2-spheres since we assume that 
the space-time is nearly spherically symmetric). Let S be an 
abstract 2-sphere and ic :S-+.I be the imbedding map of S 
into .I such that ic (S) = U - I(C) = :Sc for any CE( U min ,0). 
Then any.I I-form is characterized by w: = i*w and 

wO: = i*(VU...JaJ). (3.1) 

This decomposition extends to any .I-tensor field since.I is 
Riemannian. An intrinsically defined normal derivative to 
the Sc surfaces is given by 
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DaJ" = i*(1 VU 1 - ZVvulU) 

while the second fundamental form of Sc is '6 

fl = i*(\7(1 \7U 1 -I \7U». 

(3.2) 

(3.3) 

To find the local coordinate expression let (x A ,A = 1 ,2) 
be a chart of Sand ic :x A _(U = c,x4 =? (c» [using (U,?) 
as a chart of .I]. Then for a I-form 

_ au axB 
lUA = -lUI + -'lUB =lUA, 

a? axA 

lUO = i*(\7U JlU) = i*(lU;yJjaj U) = lUI. 

In particular 

YAB = YAB' yOO = y'ja;UajU = :W Z
, 

'fA = trarUY;A = aA U = 0, 

(3.4) 

(3.5) 

and Y AB is used to raise and lower all indices of S-tensors. 
Since Uhas only one (nondegenerate) critical point at the 
center, \7 U is a vector field that vanishes nowhere else and is 
orthogonal to the surfaces U-I(c). It can thus be used to 
construct a global polar type coordinate system (U,x A) on.I 
such that 

(3.6) 

Regardmg an S-tensor K as a function of U we then see that 

DK= aK (3.7) 
au 

and, in particular, 

DYAB = 2W -- IflAB' (3.8) 

where flAB are the components of the second fundamental 
form fl. 

After some work it is found that the Einstein equations 
take the form 

DW= _fl+MW-I_-!e4U(W-3ho'+W-lh -Z) 

+(p+p)W-'e-4uTzez, (3.9) 

alA hB I = 0, (3.10) 

DhA =aA(hOW- Z)-4hA +2(p+p)W- ' 
Xe- 6UvTEAB (fB, (3.11) 

D{lAB = 2W -1{lAC{l ~ - W -1{l{lAB - 2W -3aA WaB W 

+ W - 2VAaB W + -!W -IRYAB -1W - le4UhAhB 

- (p + p)W - Ie - 4UTZ(~ OB -OZYAB) 

(3.12) 

-V {l B a {l- 1 W - 'e4uh °h (3.13) 
R A- A -2 A' 

R - {lZ + (lAB{l AB + 2Wz _ !e4U(f/2 _ W - Zh 0
2

) 

= _ 2pe - zu, (3.14) 
-z ;;;ABh- h- {) Z ;;-;lBa a (l ;;-;lB{l whereh :=r A B'U :=r VAUB' :=r AB' 

EAB : = WEIAB = yl/Z8!~, ~B = !RrAB' and V is thecovar­
iant derivative with respect to the connection defined by 
YAB . Using eo = e;a; U = 0, Eq. (2.11) becomes 

2'oW=O, 

DOA=O, V(AOB) =0, 
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(3.15) 

(3.16) 

while Eqs. (2.14) and (2.12) yield, respectively, 

Dho- W-IhoDW- W-'hAaAw+VAh A+ W-'{lho 

= 0 (3.17) 
and 

D(vT-'e-- ZU )= W-IEABOAhB, aA(vT-Ie- ZU ) 

=W-IhoEABeB (3.18) 

and Eq. (2.13) translates into 

2' oh ° = 0, 2' OhA = 0, (3.19) 

Note that, in fact, the Lie derivative with respect to 0 A of any 
S tensor vanishes. We can now regard a stationary, rigid, 
perfect fluid space-time with a fixed equation of state and a 
fixed central potential Uo = mine U Ixu ) as characterized 
by the set ;§ = [y,{l, W,h,h 0, p,O, T I where all these tensors 
are functions of UE( Uo ,0) and where we drop the bars from 
now on when there is no danger of confusion. 

Since U is only a C I function on.I the junction condi­
tions must be derived with some care in this formalism. Let z 
be a coordinate such that z - 1(0) defines the surface of dis­
continuity, the star boundary, and use z and x A as Coo co­
ordinates. Let 

[K 1 = lim K - lim K (3.20) 
z---O + z---O 

for any .I tensor or S tensor K. The first discontinuity in 
derivatives of U is [Uzz] = :J (while [UzA] = 0). Translating 
the junction conditions of Sec. 2 to the coordinates { U 
= U(z,xA),.fA = x4 J, using az<p = (a<p/aU)Uz = :<p 'uz' 

a A <p = ax<p + <p 'UA , where <p is any scalar, and noting that 
UA = - (az/a.fA)Uz' we obtain 

[DW] = JW(Dz) Z (3.21) 

[(lAB] =JUz -ZW-1UAUB 

=JW-
I
(;; )(;;B)' (3.22) 

4. LINEARIZATION ON THE SPHERICALLY 
SYMMETRIC BACKGROUND 

Consider now a one-parameter family ;§ (A) where 
;§ (0) is the spherically symmetric solution and let 
8 f = [df(A )/dA] 1 A = ° be the variation of any fE;§ on the 
background. Specifically, we write t5YAB = CAB' t5W = w, 
t5h ° = K, t5hA = kA' t5e A = e A, t5T = 1'. Now, on the com­
pact Riemannian manifold S there is a decomposition 

CAB = (/JAB + ,!!, sYAB (4.1) 

such that 

V B(/J! = 0, (4.2) 

where (/J is unique and S is unique up to a Killing vector field 
of y. 21 Here the (/JAB measures a physical change of the geom­
etry while S represents an infinitesimal coordipate change, 
Therefore, if we select any such S and define t5f = df 
- 2' 5 f for any fE;§, then th~ change of ;§ is due to ~ mere 

coordinate transformation iff l>f = 2' J where 17 sat1sfies 
.Y Y = O. Since the Lie derivatives of all the equations for 
;§ ~imply give the linearized equations for variations of the 
form 2' t.f we now drop the caret and compute the vari­
ations 0(3.9)-(3.19) assuming that 
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0YAB=tPAB , VBtP!=O. (4.3) 

A Riemannian 2-sphere S has no closed two-dimen­
sional subgroup of its isometry group I, and is isometric to 
the Euclidean 2-sphere if dimI = 3.22 Therefore, in the case 
dimI < 3, we have inside matter 11 A = c() A for some constant 
cER. But all the quantities are invariant under ()A so all vari­
ations vanish under a coordinate transformation. Outside 
matter () A and 7 are no longer defined, but we expect axisym­
metry,J3 so it is likely that all variations will vanish under a 
coordinate transformation. If S is isometric to the Euclidean 
2-sphere (for all U), all quantities become functions of U 
only, 0 A = h A = 0, and all variations will vanish under a 
coordinate transformation. On a spherical background we 
have OA = h A = h 0 = ° and as shown in Ref. 8, flAB 
= !flYAB . Linearization of(3.18) gives D7 + 7 

= ° = aA 7 whence 7 = 7 oeuo - U which vanishes since 
op = (p + p)T - 17 and we keep the central pressure fixed 
under the variation.23 Using these facts we now find for the 
linearized Einstein equations 

(MW -I + fl)w + WDw + !W2DtP = 0, (4.4) 

flW-~w+~DtP=~ ~~ 

(X + !R)tP + ! WflDtP = - 2 W - I(R + 2pe - 2U)W, (4.6) 

X(W-Iw)- WflD(W- Iw)-4pW- Ie- 2Uw 

- !W2DDtP - !MDtP = 0, (4.7) 

DkA +4 kA - W-2aAk -2 W -I (p + p)e -6U TOeUO€AB() B 

= 0, (4.8) 

(4.9) 

where tP = Y ABtP AB . Linearization of the remaining equilib­
rium conditions yields 

V(A()B) =0 and D()A=O, (4.10) 

whenp#O, and similarly, linearization of 3Vr h r gives 

Dk + (2fl W -I - MW -2)k + VA k A = 0. (4.11) 

5. SOLUTION OF THE LINEARIZED EQUATIONS 

Referring to Ref. 8 we can show that (4.4) - (4.7) are 
equivalene4 to the linearized field equations in the static, 
spherically symmetric background, and the argument2S in 
th.at paper gives us the result that wand tP AB vanish. Since 
the I-form k A dx4 is closed on Sc by (4.9), and since 
PI (S2) = 0, kA dx4 is exact so that there exists a function 
K (U,xA ) on Sc determined up to an additive function of U 
only such that k A = a A K. Equations (4.8) and (4.11) now 
become 

aA (DK +4K - W -2 k) = 2Toeu" -6U W- I 

X(P+P)€AB()B, (5.1) 

XK= -Dk - W -1(2fl -MW-I)k. (5.2) 

To solve for K and k we let yABdx4dxB = r(U)(d() 2 

+ sin20d¢> 2). Equation (4.10) implies that 0 A is a U inde­
pendent Killing vector field on the Euclidean 2-sphere. 
Choosing the direction of the rotation axis to be the z-axis we 
let oAaA = aaq, and expand into spherical harmonics, 

351 J. Math. Phys .• Vol. 21, No.2, February 1980 

K= IKlm(r)Y,m(O,¢», k= Iklm(r)Y,m(O,¢», (5.3) 
tm ~m 

where 

J J Y lm YI·m· sinO d() d¢> = O/l'Omm' . 

As in Ref. 8, fl = 2WSf' where Sf' = auOnr). Equation 
(5.2) then becomes ° = rDko + rW -I(W - MW -I)ko 
for 1 = ° and 

KIm = r[l(l + 1)] -I [Dklm + (4Sf' - MW - 2)klm ] 

(1*0) (5.4) 

while (5.1) yields 

I (DKlm + 4K1m - W -2klm)aeYlm 
I.m 

and 

I (DKlm + 4K'm - W - 2klm )aq, Y lm = ° 
I.m 

so that 

DKlm + 4Klm - W - 2klm = ° for m*O or 1*0,1 
(5.5) 

and 

DKI + 4KI - W- 2k l = _ 2a(41T/3)1I2Toe uQ - 6U 

X W - I(p + p)r. (5.6) 

Note that Ko is an arbitrary function of U and need not be 
known to determine k A dx4 uniquely. 

With the use ofEqs. (3.9) and (3.14) on the spherical 
background we have, from the equation for ko, ko = c W 
X r- 2, for c = constant. By doing an expansion in normal 
coordinates (y i ) at the center we find that W 
= (t)Mo 1 y 1 + 0 (I Y 13

) and r = 1 yl + 0 (I Y 13
) so that in 

order for ko to vanish at the center (since h 0 = h iai U = Oat 
the center), C = 0, whence ko 0. Equation (5.5), with the 
use ofEq. (5.4) to eliminate Kim and Eqs. (3.9) and (3.14) on 
the spherical background, becomes 

W
2
DDkim + MDkim - FI(U)klm = ° for m*O 

or 1*0,1, (5.7) 

FI (U) = W 2( 5 - 4.~ /) + 1 (I + I)r - 2 + 2M _ pe - 2U. 

(5.8) 

Since the three-dimensional Laplacian A in the spherically 
symmetric case has the form Af = W 2DD! + MDf + Xf, 
Equation (5.7) is equivalent to 

Aklm = FI( U)klm for m*O or 1*0,1. (5.9) 

We now use an argument similar to that for (J) in Ref. 8. 
Let u = Wr, v = pre - 2U, and x = Mr /(3u) so that u,v,x>O 
in the physical domain, and ur = constant and v = x = ° in 
vacuo. We can show that FI(U»O is equivalent to 
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o 0.5 1.5 

FIG. I. Radial (upper curve) and tangential components of the vector field 
k as a function of the radial distance from the center for the Tolman solution 
IV with total gravitational mass m = I and/3 = Po/Po = 10 -, (qualita­
tively typical for the Newtonian limit). The symbols D indicate surface 
values. 

12(1 + 1)2 + 9u4 + 36u2X 2 + V2 + 2[5/(1 + 1) - 8]u2 

+ 12/(1 + l)ux - 2/(1 + l)v + 6Ou3x - 26u2v 

- 12uxv;;;.0. 

Since p, p;;;,O, we have that O..;;;v..;;;2xu so that the above in­
equality is implied by 

[2(1 + If + 9u4 + 12u2x 2 + 2[5/(1 + 1) - 8]u2 

+ 8u 3x + v2 ;;;.0. 

Since 51 (I +1) - 8;;;.2 for 1;;;.1, this shows that FI(U) > 0 for 
1;;;.1. Asymptotic flatness conditions with Einstein's vacuum 
equations give us that h ° = 0 (r -4), U = mr -I + 0 (r -2 ), 
and W = mr -2 + 0 (r -3 ) in the asymptotic region so that 
kim = 0 (r -I ) in this region. Similarly we find that kim = 0 
at the center. These boundary conditions together with (5.9) 
and FI(U);;;'O for 1;;;.1 yield kim = 0 for m:;;60 or 1 :;;60,1. 

Thus the only nonvanishing component is kl = klO 
which, by (5.6) and (5.4), satisfies 

W 2DDkl +MDkl -FI(U)kl = -core- 4U(p+p), 
(5.10) 

where Co = 4a(41T) 1123 - I12Toeuo. In vacuo one can easily 
show, using the exterior Schwarzschild solution, that 
W = m - Isinh2 U, r = - msinh -IU and Yt' = - cothU. 
The only solution of (5.10) satisfying the asymptotic condi­
tions is then found to be 

k = 4Aeusinh2 U. (5.11) 

It agrees with what one obtains by linearizing the Kerr solu­
tion on a spherical background, in this formalism. 

352 J. Math. Phys., Vol. 21, No.2. February 1980 

To determine the solutions in general we introduce a 

coordinate z defined by eU = eUo + a 2r where a > 0 is cho­
sen such that z (surface of star) = 1. Note that z behaves like 
a radial polar coordinate near the center since U has a posi­
tive definite critical point. Equation (5.10) can then be writ­
ten as 

ad 2k Idr + bdk Idz + ck + coq = 0, 

where 

(5.12) 

a = e2UW 2, b = 2a2ze2UM _ z - I(/Uo _ a 4z4) W 2
, 

and 

q = 8a4re - 2Ur(M _ pe - 2U). 

From the junction conditions (Sec. 3) we see that a is CO 
while b, c, and q may have jump discontinuities at z = 1. 
Also, since k is Co, k must be CO at the boundary and K is 
also clearly Co at the boundary. We assume the equation of 
state is analytic in order to do the following expansions near 
the center in terms of z. After a lengthy calculation (and 
dividing by a common factor) we obtain 

a = r + a4 z4 + 0 (Z6), b = 2z + b3z3 + 0 (ZS), 
(5.13) 

c = - 2 + o (r), q = Q3z3 + qszS + o (Z7), 

where the coefficients depend on a, Uo, Po, Po, dpl dp 
(z = 0), etc. Considering the homogeneous equation to 
(5.12), we see that z = 0 is the only singularity in [0,1] and it 
is a regular singular point, so if we make suitable power se­
ries expansions we find that the general solution of (5.12) 
satisfying the regularity conditions at the center is 

(5.14) 

where kh is the solution of the homogeneous equation with 
kh(O) = 0, dkhldz(O) = 1 and k j the solution of(5.12) with 
kj(O) = 0, dk;ldz(O) = O. To determine A and p we use the 
fact that dk IdU is continuous at the star boundary by (5.4) 
and the junction conditions to find that the boundary condi­

tions are k (1) = Ae - u'(1 - e2U')2 = :S, dk Idz(l) 
2 - 2U 2U 2U) V h U = - 2a Ae '(1 - e ')(1 + 3e ' =: were e ' 

U A 

= e "+ a 2. Thus A and p are determined by pkh (1) 
+ Akj(l) = S and pdkh Idz(l) + AdkJdz(l) = V. These 

equations will uniquely determine p and A provided 
7r(l)*O where 7r(z) = khdkJdz - kjdkhldz. Now, 
7r(z) obeys, by (5.12), 

d7r A 

a-- +b7r+qkl =0 
dz 

(5.15) 

with 7r(0) = o. 
A power series expansion gives a unique solution for 

(5.15), 7r = - Z3 IS + 0 (ZS) where the factor q3 has been 
absorbed into Co which is just a fixed constant. Thus for 
smallz> 0, 7r <Oandd7rldz <0. Now,a,q> Oin(O,I] [see 
(5.13)] and kh(O) > 0 in (0,1] since kh(O) = 0, dkhldz(O) > 0 
and if z I E(O, 1] is the smallest z such that dkh I dz(z I ) = 0, 
then d 2khldr(zl) = - (cla)kh (Zl );;;.0 since 
c = - 4a4z2F I (U)..;;;O. Thus kh has no maximum in (0,1]. 
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FIG. 2. As Fig. I, but /3 = 0.28. For /3> 1/3 the condition that p>p every­
where is violated and the magnitude of k at the center becomes infinite. 

Now supposez2 is the smallestzE(O,I] such that 1/'"(Z2) = O. 
Then d 1/'"/ dZ(Z2) = - q(z2)k (Z2)a - 1(Z2) < 0 so that there 
exists an E> 0 such that 1/'"(z) > 0 for ZE(Z2 - E,z2) which 
contradicts 1/'" < 0, d 1/'"/ dz < 0 for small z. Therefore, 
1/'"(1)=FO and there exist unique A. and.u solving the equa­
tions giving the boundary conditions of k. We summarize 
these results in the following theorem. 

Theorem: Let ?J denote the set of (isometry classes ot) 
globally stationary, asymptotically Euclidean space-times 
consisting of 

(i) a spatially bounded barotropic perfect fluid in rigid 
motion with a fixed analytic equation of state p = p( p), sat­
isfyingp;;op;;oO, dp/dp >0, and fixed central values Po ofthe 
pressure and Uo of the gravitational potential; 

(ii) an exterior vacuum region. 
Then the space of infinitesimal deformations in ?J of 

the unique static spherically symmetricgoE?J is three-di­
mensional (corresponding to the space of infinitesimal iso­
metries (Jiai ofYijdxidxl). 

6. EXAMPLES 

By (2.9) and (2.14) the vector field k i = 8h i satisfies on 
the spherical background the equations 

(6.1) 
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and 

Vsk s = 0, (6.2) 

where (J i = 88 i is a Killing vector field of the 3-metric Y ij • 
The field k = (k i ) therefore behaves qualitatively just like 
the magnetic field of the earth, for example. It does not seem 
to change qualitatively under a change of the equation of 
state. It vanishes in the nonrelativistic limit, while in the 
ultrarelativistic limit the peak of the magnitude of k at the 
center becomes sharper. 

In Figs. 1 and 2 we plotted the radial component k rand 
the tangential component ko ofk against r for a weakly and a 
highly relativistic case (characterized by the value of the 
quotient {3 = Po / Po of central pressure and density being 
small and big, respectively). The plots are for Tolman's solu­
tion IV.1B We also plotted the curves for the Schwarzschild 
interior, but there is no qualitative difference. 
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"For static spherically symmetric solutions with a given equation of state 

p = pep) there remains only one arbitrary parameter, which we have al­
ready chosen to be UO • This will determine the central pressure, central 
density, total gravitational mass, radius of the star, etc. For the slowly 
rotating case one would expect only one more parameter, for example, the 
angular velocity UJ. But since the central values of the density, pressure 
and potential do not depend on the direction of the rotation they will 
depend at least quadratically on UJ so that, when the equations are linear­
ized on the spherical background, a degeneracy occurs. This is why we 
must fix Pee",,, independently in this case. 

24In Ref. 8 it was not realized that the components riA can be made to 
vanish globally. Therefore, the linearized equations there contain an addi­
tional quantity QA that can, in fact, be put equal to zero. 

25 A lemma is stated and used in this argument, but the proof given is not 
complete as it ignores problems of differentiability. For a discussion and a 
proof of a revised (weaker) lemma sufficient for our argument see H.P. 
Kiinzle and J.R. Savage, C.R. Acad. Sci. Paris, Ser. A 287,249-50 (1978). 
Also note that the first term of (4.14) in Ref. 8 should have a negative sign. 
The argument in the appendix needed to show that UJ = 0 can be improved 
to hold also in the case where O<,p<p. 
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We rigorously characterize the KMS and the limiting Gibbs states for mean field models. As an 
application we prove the convergence of the Gibbs states for the Dicke Maser model in the 
infinite volume limit. 

I. INTRODUCTION 

Let JY be a Hilbert space and let A be a finite ordered 
subset [il , ... ,in ) of N let 9J A denote the C *-algebra 

1® .. ·®9J® .. ·®9J .. ·®9J, 

where [:jJ is the C *-algebra of all bounded operators on JY. 
For A C A ' there is a canonical isotony of 9J A in 9J A ., 

allowing us to define the C *-algebra 9J 00 as the inductive 
limit of! 9J A IA ~ N). 

A state W of 9J 00 is called locally normal if for every 
finite A C N, the restriction W A of W to 9J A is a normal state 
of [:jJ A • 

A state W of 9J oc is called symmetric if for all elements of 
the type XI ® ... ® Xn, XiE 9J, nE N 

W(XI ® ... ® Xn) = w(Xi, ® ... ® Xi)' 

where i = (il , ... ,in) is a permutation of(I,2, ... ,n). 
A statew of 9J oc is called aproduct state iffor aliA I and 

A 2 finite subsets of N such that A I n A 2 = ifJ and XiE 9J A,' 
i = 1,2, holds: W(XI X2) = W(XI ) W(X2)' 

We denote by wI' the symmetric locally normal product 
state defined by the density matrix p on JY such that 

n 

Wp(XI ® .•• ® Xn) = II TrpXi' 
;= 1 

Then the following result holds: l 

Theorem 1.1: Let W be a locally normal symmetric state 
of 9J oc. Then there exists a unique probability measure fL on 
the set 9J I of density matrices on JY such that 
W = f dfL( p)w p' We start from this theorem to study gener­
al properties of the equilibrium statistical mechanics of all 
models of the mean-field type. 

Our main result consists in an abstract proof of the exis­
tence of the so-called "reduced problem" per lattice site. 
More precisely: Any KMS state is described by a measure fL 
with support on those locally normal product states wI" for 
which p is a solution of the gap-equation. Furthermore for 
limiting Gibbs states the support of the measurefL is concen­
trated those locally normal product states W I' satisfying the 
variational principle. As a by-product the convergence ofthe 
free energy is shown. Finally the results are applied to the 
Dicke maser model. 

"'Aangesteld Navorser NFWO, Belgium. 
h'On leave of absence from Fachbereich Physik, Universitiit Miinchen. 

II. EQUILIBRIUM STATES FOR MEAN·FIELD MODELS 

For purely technical convenience, in this section we re­
strict ourselves to the case dimJY < 00. At the end of the 
paper we treat a model where dimJY = 00. By mean-field 
models we mean systems with a local Hamiltonian of the 
following type: for each finite subset A of N: 

1 
HA = '" A + '" B (1) if:.. I 2N (A) ~ IJ' 

i,jE A 

whereAiE 9J I il and allAJE A are copies of A = A *E 9J and 
where BijE 9J I i,JI and all Bij (i,jE A) are copies of a self­
adjoint B in 9J ® 9J, which is invariant under the symme­
try (i])-(ji). N (A ) is the number of elements in A. Remark 
that our results extend trivially to many body interactions of 
mean-field type. For infinite A C N, letwf3,A be the canonical 
Gibbs state of 9J A at inverse temperature f3 > 0 

Tr e -f3H" 

Wf3,A (X) = H ; XE 9J A . (2) 
Tre- f3 , 

An alternative way to characterize the canonical Gibbs state 
wf3•A is to impose the condition that for all XE 9J A :2 

Wf3 A (X * X) 
f3Wf3 A (X * [HA ,x ]);;;Wf3 A (X * X) In' . (3) 

, , W f3.
A 

(XX *) 

Notice that 9J A is isomorphic with 9J II ... ,N(A)I and because 
of the mean-field character of the Hamiltonian this isomor­
phism maps the Gibbs state Wf3,A into wf3,II ..... N(A)1 . There­
fore for the thermodynamic limit we can restrict ourselves to 
increasing intervals An = (l, ... ,n). We denote Wf3.A" = w(3.n· 
Consider a w*-limit point wf3 of the set [wf3.n InE N). Then 
due to the symmetry oftheHA' wf3 is a symmetric state, and 
Theorem 1.1 yields 

wf3 = f dfL(P)W I' , (4) 

for some probability measure fL. 
Lemma II. 1 : LetXbe any element of 9J A' then with wf3 

as above 

f3 f dfL(P)w p(X * [H:,x ]»wf3 (X * X) In wf3(X * X) , 
wf3(XX*) 

where H: = ~iE A H p.i and Hp,iE 9J 1 il is a copy of HI' 
=A +Bp attheithsitewithBp =Tr2 (1 ® p)B. Tr2 is the 

partial trace over the second Hilbert space. 
Proof Because of the assumption and (3) it is sufficient 

to compute: 
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lim lUfJ,/I(X* [HA",x ]), 
n ~ oc 

Clearly 

lim lUfJ,/I(X*[ I Ai,x])=lUfJ(X*[ LAi,x]), 
n ·oc lEA" lEA 

and 

lim lUfJ,/I (X* [_1 L Bij,x]) 
/I 'X \. 2n i#j 

i,jE A" 

= !i?! n - ~ (A) lUfJ,1I (X * iB [Bijo,x]) (jot A), 

by symmetry. Remark that X *~iE A [Bijo,x lis a local ele­
ment independent of All' Therefore 

lUfJ(X* L [Bijo,x]) = Idf.l(P)lUp(X* ~ [Bp,i,x]) • 
EA EA 

Lemma 11.1 proves that any limit point oflocal equilibrium 
states satisfies the inequality: For any XE f!jJ A 

(3I df.l(p) lU p(X* [H:,x ]»lU(X*X) In lU(X*X) , (5) 
lU(XX*) 

with lU = S df.l( p)w p' We remark that for any density ma­
trix P on diY, the state lU p of f!jJ 00 is a factor state. If P =/=p', 
then the representations of lU p and of lU p' are quasi-inequi­
valent, which implies that the representations are disjointY 

Lemma II,2: If a symmetric state lU of f!jJ 00 satisfies the 
inequality (5) then for f.l almost all P one has 

[p,Hp] = O. (6) 

Proof For any X in some f!jJ 11,2, .. ,111 consider 

1 ( N~I ) 
YN = N X ® 1 ® 1··· + 1 ® X ® 1··· + ® 1 EX , 

then 

lim lU(Y~YN)= lim lU(YNY~)=lU(X ® X*), 
N- ... oo N-co 

and inequality (5) becomes 

I df.l(p)lU p(X *)lU p([H ~1, ... ,"I,x ]»0. 

By taking X = X * remark that the left-hand side is purely 
imaginary, hence 

I df.l(p)lU p(X)lU p([H ~1,,"I,x]) = O. 

By a straightforward algebraic manipulation (polarization) 

I df.l(p)lUp(Y)lUp([H:,x]) =0, for all XEf!jJA' 

and all YE f!jJ A . For any measurable set.1 in f!jJ 1 such that 
f.l(.1 ) > 0 consider the decomposition of lU 

lU = f.l(.1 )lU.j + f.l( f!jJ 1 \.1 )lU1!l, \.1, 
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into the disjoint states 

and 

lU.j = _1_ ( df.l(p)w p 
f.l(.1 ) J.j 

lU.YI".j = (f!jJ 1 .1) f df.l(p)w p' 
f.l 1 \ .Yi,'.j 

Now there exists a net! Ya I a of positive elements Ya 

E f!jJ A (a) such that II Ya II.;;;; 1 and limalU.j (Ya) = I, 

limalU.Yi".j (Ya ) = 0.' Since IllU p([H ~,x ])11 
.;;;;2N(A )IIXII(IIA II + liB 11), 

_1_ ( df.l(p)w p([H~,x]) = O. 
f.l(.1 ) J.j 

Lemma II.3: If lU is a symmetric state of f!jJ 00 satisfying 
the inequality (5), then for f.l almost allp 

lU (X*X) 
(3lU p(X*[H:,x]»lU p(X*X)ln p , (7) 

lU p(XX*) 

for all A C N and all XE f!jJ A' 

Proof Again for any measurable set.1 in f!jJ 1 such that 
f.l(.1 ) > 0 we consider the decomposition lU = f.l(.1 )w.j 
+ f.l(f!jJ 1 \.1 )w@".j into disjoint states and the net! Ya la 

as in the proof of Lemma 11.2. Consider now the net! Za I a 
where 

Za = _1_ {X ® Ya ® 1 ® ••• + X ® "''; 1 1 ® Ya }, 

na 

XE f!jJ A forsomeA C N, and where! na la is a net of natural 
numbers to be specified later on. 

One checks: 

lim lU.j (Z!Za) = lU.j (X*X), 
a 

lim lU.j (ZaZ!) = lU.j (XX*), 
a 

lim lU1!l".j (Z !Za) = lim lU#".j (ZaZ!) = o. 
a a 

Since ZaE f!jJ A '(a) for some finite A '(a), for each lU p 

lU (Z * [H A '(a) Z ]) pap , a 

x [H: '(a),x ® 1 ® Ya ]) 

= _1_lU p(X* [H:,x])lU p(Y~) 
na 

+ _1_lU p(X*X)wp(Ya [H~(a),Ya]) 
na 

+ na -IlUp(X*[H~,x])w2(Ya), 
na 

where Lemma 11.2 is used. The net! na I a is specified such 
that 

lim_I_f., (Y [HA(a) Y ])=0 
~p a p 'a , 

a na 
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for all P ® !:4 I . Then clearly 

lim OJ (Z * [HA '(a) Z ] 
pap 'a 

a 

= {OJ p(X * [H:,x D, 
0, 

if pE 11, 

if pE !:4 1\11. 

Hence by taking X = Za in the inequality (4) and taking the 
a-limit one gets the results. • 

Now we formulate our main result: 
Theorem II.4: Let OJ be any symmetric state of !:4 00 , OJ 

satisfies inequality (5) if and only if 

P = e - (311"/Tr e - (3lf", J.l a.e. 

Proof Using Lemma 11.3 with XE !:4, one gets 

TrpX*X 
pTrpX*[Hp,x]);>TrpX*Xln , J.l a.e. 

TrpXX* 

(8) 

Using the techniques of Ref. 2 the result is obtained. • 
From the theorem it follows that the problem of mean­

field systems is reduced to solving the one-site nonlinear Eq. 
(8). For high temperatures we have: 

Proposition II.5: For P < 1I211B II, Eq. (8) has a unique 
solution. 

Proof LetFbe the mappE !:41_F(p) = e-(3Hp
/ 

Z(p)E !:41 

where Z (p) = Tre - (3Hp
• We show that F is a strict contrac­

tion if f3 < 1I211B II. Denote by 11'111 the trace norm, then for 
PI,P2 E !:4 I : 

1!F(p,) -F(P2)11, 

= Ilexp[ -f3Hp1 -logZ(p,)] 

-exp[ -PHP1 -logZ(P2)]II, 

= II f dt exp [ - (1 - t )(f3Hpl 

+ 10gZ(p,)1I f3(Bp1 -Bp) 

+ logZ(p,)/Z(P2») exp! - t [f3Hp1 

+ 10gZ (P2) ]) III 

<PIIBllllp, -P2111 + 1I0gZ(pl -logZ(P2)1 

<2f3IIB IIII PI - Pzll, . 

The result follows from the contraction mapping principle. 6 

This result together with Lemma 11.1 implies that the 
mean-field models we are considering have a unique limiting 
Gibbs state for high enough temperatures. 

For low temperatures one cannot expect to have a 
unique solution of Eq, (8). In fact for the BCS-modeF one 
shows that below the critical temperature Eq. (8) has the 
~olutionsPnorm corresponding to the normal phase, andp(a) 
(aE[0,217'D corresponding to the superconducting phase. 
Furthermore the limiting Gibbs state is given by the state 

1 i 21T 

OJ(3 = - da OJ pta) • 
217' 0 

This shows that the support of the measure J.l( p) defining a 
limiting Gibbs state (4), can be strictly smaller than the set of 
solutions of (8). We expect this to be a general feature of 
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mean-field theories. The support of the measure is reduced 
by the following proposition. 

Define the pressure 

p = sup p(OJ), 
'v 

where the sup is taken over all symmetric states of !:4 00 , 

p(OJ) = s(OJ) - pe(OJ), where s(OJ) is the entropy density and 
where e(OJ) is the energy density of the state OJ. 8 

Proposition II.6: If OJ(3 is a limiting Gibbs state, then 

p(~) = p, J.l a.e. 

Proof We denote as before by OJ(3,n the Gibbs state for 
the volume An = ! 1, ... ,n) and OJ;;'n the restriction of OJ(3,n to 
the subalgebra !:4 A", (m < n). Let! OJ(3,n ) n be a subsequence 
of Gibbs states converging to OJ(3' Let us divide up the inter­
val [I,n] into equal intervals oflength m plus a remainder 
interval oflength less than m. Then by the subadditivity and 
monotonicity of the total entropy S: 

! S(OJ(3,n)< ! ([ ; ] + I)S(OJ;;'n). 

n 

Since by assumption OJ;;'n _ OJ{-) as n-oo and by continuity 

of entropy 

lim sup (lIn)S (OJ(3,n )«lIm)S (OJ{-), 
n 

this implies 

lim sup(lIn)S (OJ(3,n ) <s(OJ(3 ). 
n 

From the convergence of the energy density 

lim sup(lIn)[S (OJ(3,n - POJ(3,n (HAn)] <p(OJ(3)' 
n 

On the other hand 

lim inf (lIn)[S (OJ(3.n) - POJ(3,n (HAn)] ;>p;>p(OJ(3)' 
n 

as a consequence of Klein's inequality. Hence p = p(OJ(3)' 
Since dim£' < 00, we have' 

p(OJ(3) = f dJ.l(p)p(OJ p), 

and the proposition follows. • 
From the proof of this proposition we have 
Corollary II. 7: The thermodynamic limit of the pres­

sure for the mean-field models considered exists and is given 
by 

1
. I -(3H, 

P = 1m - In Tr e ' ". 
n--I>OO n 

III. APPLICATION-THE DICKE MASER MODEL 

As an application we study the Dicke Maser model. 9 

Hepp and Lieb lO gave a rigorous treatment of the thermody­
namics and of the convergence of the intensive observables 
for the one-mode version of the model. Here we discuss the 
infinite mode version with the Hamiltonian II 

Hn = i ak+ak + E i a,/ak-
k~ I k~ I 
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+ ~ ( i at (TI- + h.c.), 
n k.1 c, I 

with ° < c<>i 2. 

at, ak are copies of the creation and annihilation oper­
ators (a + ,a) of the harmonic oscillator describing the pho­
ton mode, acting on a Hilbert space % and satisfying the 
commutation relation [a k ,a:] = I. (T k± are copies of the 
Pauli matrices (T + and (T - acting on a two-dimensional Hil­
bert space (? They satisfy the relations 

((T + ,(T + 1 = 2«(T +)2 = k ,(T 1 = 0, 

((T + ,(T 1 = I. 

In Ref. 11 the variational principle of statistical mechanics 
for this model was solved partly in the sense that one found 
the infimum of the free energy by variation only over a class 
of states which factorize with respect to observables in the 
photon and atomic algebras. Also the thermodynamic limit 
of the free energy was proved. 

Clearly, the model is a mean-field model with permuta­
tion symmetry, such that the analysis of the previous sec­
tions is applicable. The main results of this section will be the 
extension of the variational principle to all locally normal 
symmetric states, and the proof of the convergence of the 
Gibbs state. 

For this model the algebra f)J becomes the set of all 
bounded operators on the Hilbert space JY = c5Y ® (;2 

which is an infinite dimensional Hilbert space. This means 
that as far as the applicability of Theroem 1.1 is concerned 
not every state is locally normal. Moreover as the local Ham­
iltonians are unbounded operators, the correlation inequal­
ity in Sec. II should be applied with some care. The problem 
consists in extending the correlation inequality (3) to un­
bounded operators. For this model the domain questions are 
easily settled by observing that for finite volumes the total 
particle number operator is a conserved quantity. 12 The 
problem of local normality is solved in: 

Proposition III. 1 : A limiting Gibbs state wf3 for the 
Dicke Maser model is locally normal. 

Proof We have to prove that for any finite volume A, 
the restriction wf3.A of wf3 to :dJ A is a regular state; because of 
the symmetry it is sufficient to prove the regularity on f)J III . 

This follows from von Newmann's uniqueness theo­
rem, if the map 

ZE e-.-.w f3 [ expi(za t + za I ) ], 

is continuous at z = 0. Let [wf3.1l 1 n be a subnet of Gibbs 
states w*-converging to w(l' then 

IWf3.n [expi(za l ' +zaJ - 1] 12 

<2[ 1 - wf3.n [cos(za l+ + za l )] 1 

[ 
2(zall +za l )] 

<4wf3.n sin 2 

<wf3.1l [(za/ +za l )2] 

= IzI2wf3.Il(1 + 2a l+ a l )· (9) 

For an upper bound of the right-hand side, we apply inequal­
ity (3) with X = a l . then 

- /3WI'.1l (a II a I) + Je/3wf3.n (at (TI') 
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+ wf3.n (a l
l a l ) 

,>wr3.Il (a l a l ) In + . 
wri.n(a l a l ) 

With X = (TI+ (TI" , one obtains 

- Je/3wf3.,,(a l+ (TI ),>0, 

hence 

or (10) 

wr3.Il (a l' a l )<l/(e fl - 1). 

Therefore (9) becomes 

wf3.1l [expi(za l+ + za l ) - 1]< [(ef3 + I)/(ef3 - 1) liz 12. 
On taking the limit n~ 00, the proposition follows. • 

We are now in a position to apply Theorems 1.1 and 
11.4. The problem is reduced to solving the so-called gap Eq. 
(8). But its solutions are well known: They exhibit a phase 
transition at a critical temperature Tc (0 < Te < (0). Above 
Tc equation (8) has a unique solutionpnorm corresponding to 
the normal phase. Below Tc ' in addition to the normal phase 
Pnonn one obtains also a one-parameter family of solutions 
W p(a)' labeled by the spontaneously broken gauge symmetry 
parameter aE [0,217']. W pIa) has the properties that, if 'f" is 
the gauge autormorphism of f)J oc defined by 

then 

{J) p(a) -r a' == (j) p[(a +- a')mod 2rr I ' (11) 

and that ll 

p = p(w p(a) > p«(U 1'"",). (12) 

Proposition 11.6 holds true also for the Dicke Maser model, 
since by Proposition 111.1 the local normality of the limiting 
Gibbs states is guaranteed and since by bound (10), energy 
and entropy densities are finite. For T>Tc ' clearly wf3 
= W . For T < Te , Proposition 11.6 and (12) imply 

P n .. rm 

Wf3 = f d/l(a) W pta) • 

Because of gauge invariance of wf3 and (11) necessarily 
d/l(a) = (l/217')da. Therefore the Gibbsstateswf3.1l converge 
to wr] = (l/217')S6" daw pIa) as n--4OO. 
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Two models for an infinitely extended boson gas are studied. The aim is to determine 
approximate equilibrium states for them by minimizing the free energy density over a 
class of trial states. For one of the models, in which the interaction is proportional to 
the square of the number of particles, the equilibrium state derived from the usual 
thermodynamic limiting argument (the Gibbs state) is also obtained. It is seen that the 
set of approximate equilibrium states consists of this Gibbs state and states with the 
same thermodynamic properties. Using the other model, in which the particles are 
assumed to interact according to a delta function interaction potential, some of the 
problems of approximate solutions are discussed. 

1. INTRODUCTION 

In this note we discuss two models of infinitely ex­
tended interacting boson systems in quantum statistical me­
chanics. The first one (Sec. 3) we are able to solve exactly; the 
second (Sec. 4) we solve approximately and are able to illus­
trate some of the problems of approximate solutions. 

The method used is to apply the variational principle 
described by Robinson I and Svarc,2 amongst others. This 
states that the equilibrium states of a quantum mechanical 
many-body system are the states that minimize the free ener­
gy density ofthat system expressed as a functional defined on 
a suitable set of states. "Suitable" means that we look only at 
the physically reasonable states. For example, Robinson l re­
stricts attention to locally normal translation invariant 
states and proves, subject to certain restrictions on the mod­
els considered, the coincidence of the free energy density 
defined using the variational principle and that defined 
through the more usual limiting process. 

The difficulty in following this program is that it re­
quires an explicit expression for the free energy density func­
tional in terms of the parameters of the state. This is not 
available in general, but for a restricted class of states it is 
both available and usable. We describe these states below, 
and then by minimizing the free energy density over these 
states we obtain an approximate equilibrium state. 

2. QUASIFREE APPROXIMATION 

A state of an infinitely extended boson system may be 
regarded as a functional ,u:M~C which is defined on a space 
M~L 2(JR3) of test functions and which satisfies conditions 
obtained by Araki3 and Segal.' These authors also describe 
the connection between this definition of a state and the 
more usual algebraic one. Briefly, p is related to the conju­
gate fields t/J(x), t/J*(x) which satisfy the canonical commuta­
tion relations [t/J(x), t/J*(y)] = b (x - y), in thatp(h )isregard­
ed as the expected value in a thermodynamic (or algebraic) 

state of exp [i( t/J(h ) + t/J*(h » (\/Z] , i.e., 

p(h) = < exp [i( t/J(h ) + t/J*(h » (\/Z]), (2.1) 

where 

t/J(h) = f t/J(x)h (x)d 3X , t/J*(h) = f t/J*(x)h (x)d lX, (2.2) 

and < > denotes the expectation value in the thermodynamic 
state. This formal connection motivates the definitions given 
below for the physical interpretation of p. 

Quasifree states were introduced by Robinson5
; they 

are states determined by particUlarly simple functionals. It 
has been shown by various authors (Araki and Woods,6 Lan­
ford and Robinson,? Lewis and Pule,s Critchley and Lewis~ 
that they emerge naturally in the study of boson systems. 
The quasifree states considered here are given by 

p(h) = e -llh 11'/4 e(ilV'2)(uh(O) + ah(O» e - (h,Ah )12, (2.3) 

where a E C, A denotes Fourier transform, and A is a positive 
linear operator on M. We assume that A is a multiplication 
operator in the Fourier transformed space: 

(2.4) 

The state (2.3) is not invariant under the gauge transforma­
tion h~ilJh , but a gauge invariant state is obtained by aver­
aging (2.3) over the gauge group: 

fp(eilJh) (~:) = -e-llhll'/4Jo(YZlallh(O)I) 

X exp( - ~ (h,Ah », (2.5) 

where Jo is a Bessel function. Lewis and Pules showed how 
this state arises in the study of the free boson gas. It has the 
same thermodynamic properties as the state (2.3), but differ­
ent algebraic ones. Both are interpreted as describing a bo­

son gas undergoing Bose-Einstein condensation. The e'Vz(.) 
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term in (2.3), and the Jo(.) term in (2.5) describe the conden­
sate of density la 1\ and the e - (.)12 term describes the nor­

mal component of the gas with density Sa(p)d lp/(21T)3 (see 
below). The fact that the state (2.5) can be decomposed as a 
gauge average of (2.3) demonstrates the breaking of gauge 
symmetry expected of a condensing boson gas (see for exam­
ple Johnston 10). 

The thermodynamic quantities that we require for the 
variational problem are defined as follows: 

k {J1) = f p' a(p) ~ (kinetic energy density), (2.6) 
2 (21T)3 

ii{J1) = fa(P) d lp (particle density), (2.7) 
(21T)3 

s{J1) = f[ (1 + a(p»)log(1 + a(p») - a(p)loga(p)] d lp , 
(21T) 3 

(entropy density). (2.8) 

To see how these arise we look by way of example at ii{J1). If 
< > denotes the expectation in the thermodynamic state cor­
responding to /-l, then < t/J*(x)t/J(x» integrated over a finite 
volume V is interpreted as the number of particles in that 
volume. So if < t/J*(x)t/J(x» is independent of x (as we find is 
the case here) then it may be interpreted as the density of 
particles in the state. Using the formal identifications of(2.1) 
and (2.2) we find that for the state (2.3) [or (2.5)] 

<t/J*(x)t/J(y» = lal' + a(x - y), 

so that 

ii{J1) = <t/J*(x)t/J(x» = lal' + a(O) = lal' + fa(P)~. 
(21T)3 

The expression for the kinetic energy density k {J1) arises 
similarly. That for the entropy density S(p,) is to be expected 
as it represents the entropy density of a linear superposition 
of harmonic oscillators. The problem in passing to the ther­
modynamic limit, however, is that in the weak *-topology 
the entropy density is only upper semicontinuous as a func­
tion of the states (Robinson I). The validity of the expression 
(2.8) has been established under various assumptions by 
Lanford and Robinson I I and Fannes. I

' Critchley and Lewisll 

have also considered the problem, and Fannesl4 has derived 
the analogous expression for Fermi systems. 

A model of an interacting statistical mechanical system 
amounts to the assumption of a potential energy density 
functional u{J1). For example if the interaction is mediated 
by an Euclidean invariant two-body function U (x - y), then 
in the state (2.3) [or (2.S)] 

u{J1) = 2Ia l'fu(P)a(P)--.!!L 
(21T)3 

+ fa(P)U(P - q)a(q) d lpd lq + U(O)[ii{J1)f. 
(21T)6 

This arises from the potential energy term, 

f t/J*(x)t/J*(y)U (x - y)t/J(y)t/J(x)d lxd ly, 
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(2.9) 

in the many-body Hamiltonian, so that the potential energy 
density in an Euclidean invariant state [in which 
<t/J*(x)t/J*(y)t/J(y)t/J(x» depends only on Ix - yl] is 

f U (x)<t/J*(O)t/J*(x)t/J(x)t/J(O»d lX, 

which can be evaluated using (2.1) and (2.2). 

The free energy density functional at temperature Tis 
then given by 

1{J1) = k{J1) + u{J1) - Ts{J1), (2.10) 

and we may now minimize this over the trial states (2.3) [or 
(2.5)] subject to the condition that the particle density ii{J1) 
should take a fixed value denoted by p. To take account of 
this we introduce a Lagrange multiplier y and minimize 
instead 

ft{J1) =1{J1) - y(ii{J1) -p). (2.11 ) 

We first investigate whether there is a local minimum of 
ft {J1) by differentiating it with respect to the parameters de­
termining the state. This gives the following equations: 

aft .Tl (1 1) _ p' au 
aa(p)' og + a(p) -"2 - y + aa(p) , 

aft '2al _ au 
alai' I y- alai' 

aft :p = lal' + fa(P) d lp . 
ay (21T)3 

(2.12) 

(2.13) 

(2.14) 

The argument of the complex number a does not ap­
pear explicitly in ft{J1) [assuming it does not appear in u{J1)], 
so it is undetermined. Thus, if la I is nonzero in the minimiz­
ing state, then there will be a family of states (each deter­
mined by a different value of the argument of a) minimizing 
the free energy. This nonuniqueness of the equilibrium stat­
ed illustrates the breaking of gauge symmetry mentioned 
earlier. 

3. EXAMPLE 1: O{f.t) = 2c[if{Il)f 

Davies IS has considered a class of interacting systems in 
which the interaction is a function of the particle density. 
Here we look at the particular case of this in which the finite 
volume Hamiltonian is 

(3.1) 

(K = kinetic energy term, N = number operator, c is a posi­
tive constant and I V I is the volume). This gives a potential 
energy density functional 

(3.2) 

Lebowitz and Penrosel 6 and Svarc' have shown how this re­
presents a repulsive interaction in the limit of extreme long 
range and extreme weakness. 

For this model, Eq. (2.12)-(2.14) are 

( 1) p' Tlog 1 + -- = - - y + 4c, 
a(p) 2 

(3.3) 

2lal(y - 4cp) = 0, (3.4) 
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f d3 
JaJ' + a(p)~ =p. 

(21T)' 

To solve and interpret these equations let 

(3.5) 

/3= liT and zo=exp[/3(y-4cp)]. (3.6) 

Then from (3.3), a(p) = zo(efip'/2 - zo) - 1, 

from (3.4), JaJlogzo = 0, 

from (3.5), P = JaJ' + (21T/3) - 312g3/2(ZO), 

where 

00 

g3/2(z) = L 
n=l 

(3.7) 

(3.8) 

(3.9) 

= (h/3 )3/2f z d 3
p , z< 1. (3.10) 

efip '/2 _ Z (21T)3 

From (3.8) either Zo = 1 or jaJ = 0. Let Pc = (21T/3) - 3/2 

g3l2(1). Ifp <Pc, then from (3.9)zo < 1, and so we must have 
Ja J = 0. Therefore, Zo is the unique solution of 
p = (21T/3) -·3/2 g3/2 (zo)' If P > Pc, then from (3.9) we must 
have JaJ >O,andso, from (3.8)zo = 1. Hence JaJ2 =p -Pc' 
Thus, the gauge invariant state (2.5) that minimizes the free 
energy density is 

(i) p <Pc: f1(h ) = e - Ilh 11'/4 exp[ - ! (h,A (zo)h > ], 
(3.11) 

(ii) P >Pc: f1(h) = e -lih 11'/4Jo(,v'2(p - pj/21h (O)J> 

X exp[ - !(h,A (l)h >], (3.12) 

where <h ,A (z)h > = J h l (P)zh2(P) d
3

p, z<1. 
1 2 (efiP'/2 _ z) (21T)3 

(3.13) 
This may be interpreted as showing that at density Pc the 
system undergoes a phase transition. For densities less than 
this there is a unique minimizing state and no Bose-Einstein 
condensation; at higher densities there is a continuum of 
minimizing states of the form (2.3) each determined by a 
different argument of the complex number a, and such that 
(3.12) is their average. Further, since lal is nonzero the gas 
exhibits a Bose-Einstein condensation. Note that the fuga­
city z' = efir is related to the parameter Zo according to 
Zo = z' e - 4cp!3. 

To see that (3.11), (3.12) is the exact solution to this 
problem (not just an approximation) we compute the state 
using the Hamiltonian (3.1). If we do this in the canonical 
ensemble (in which the number of particles is fixed) then the 
interaction term eN '/J V J isjust a constant. So this term can­
cels out in the density matrix expression for the state 
(e -!3l1 Itracee - !3

l1
) and the system is equivalent, from a 

mathematical point of view, to the canonical ensemble of the 
free boson gas. But Cannon l7 has shown that the thermody­
namic limit of this is the state (3.11), (3.12); therefore, this is 
also the limit of the equilibrium state determined by (3.1). 
Furthermore, Davies" has shown that, in the limit, the 
grand canonical and the canonical equilibrium states deter-
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mined by (3.1) are the same. Therefore, (3.11), (3.12) is also 
the limit of the grand canonical state determined by (3.1). 
Hence, it may be regarded unequivocally as the solution of 
the model. 

4. EXAMPLE 2: IMPENETRABLE POINT 
PARTICLES 

The second example has an interaction given by the 
two-body potential 

U(x-y)=eo(x-y) (4.1) 

or, more precisely, U(P) = e for allp E JR3. The interaction of 
(3.1) is sometimes considered as an approximation to this at 
small densities. For larger densities Huang l8 suggests that 
2c(N 2 

- ~n~ )/J V J is more accurate, where no is the number 
of particles in the ground state (the condensate). 

To determine the potential energy density we use the 
expression (2.9). This gives 

+ e[n(P)f = 2c( [n(p)f - !JaJ4). (4.2) 

As JaJ' is interpreted as the density of the condensate, this is 
identical to Haung's suggestion. 

With ii(P) given by (4.2), and with ZI = exp/3 (y - 4cp) 
Eq. (2.12)-(2.14) can now be investigated. Firstly, we note 
that aiilaa(p) is the same in this example as it was in Exam­
ple 1, and so (2.12) becomes, as in (3.7) 

a(p) = Zl (efip'/2 - ZI) - I. (4.3) 

The extra term in the potential (4.2) changes [(3.8) or (2.13)] 
to 

JaJlogz, = JaJ( - 2ef3JaJ'); 
(3.9) [or (2.14)] remains as 

p = JaJ' + (h/3) - 312g3/2(ZI)' 

(4.4) 

(4.5) 

Retaining the notation of Sec. 3, we see that for p <Pc' a 
solution of these is 

(4.6) 

But solutions with Ja J *0 are also possible for some values of 
p, as we now demonstrate. From (4.4) if JaJ*O, then 
z, = exp( - 2ef3JaJ'). So from (4.5) JaJ must satisfy 

(4.7) 

Graphical considerations (Fig. 1) show that for values of p 
near to but less than Pc' this equation has two solutions for 
JaJ'. Forp>pc' (4.5) shows that we must have JaJ >0, and 
so from (4.4)z, = exp( - 2e/3JaJ'). Substituting back into 
(4.5) shows that JaJ is determined by (4.7). From Fig. 1 this 
has a unique solution, and hence there is a unique solution to 
(4.3)-(4.5) for these values of p. A further immediate deduc­
tion from Fig. 1 is that whenp >Pc' the solution JaJ' of(4.7) 
is greater than p - Pc; i.e., the density of the condensate is 
greater than p - Pc' This is in marked contrast to the free 
boson gas and to the model of Sec. 3. 
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FIG. I. p - lal 2 for three values of p( - -), plotted against 
(217"/3) V2

g'12 
(e- 2c{3,a l' )(--). 

We now determine which of the solutions (4.6) or (4.7) 
is an absolute minimum ofi{Jt). The expression (4.3) is sub­
stituted intol{Jt) (2.10) and the integrations performed. This 
results in a functionfofthe one variable lal: 

f(lal) = C(2p2 - lal 4
) + ,6>-Ilogzl (p - lal 2

) 

where Zl depends on la I through 

p = lal 2 + (2-rr{J) - 3/2g3/2(ZI), 

00 

P is fixed, and gr(z) = I zn Inr. Differentiating (4.8): 
n~l 

3 21 a l - 4clal - -p-Iogzh 

_ 12clal 2 _ ~ logzl _ 21al ~. 
{J (JZl dial 

Thus the solution with lal = 0 is a local minimum, since 

-- >0. d:f I 
dlal 2 a~O 

Now assume thatp is less than Pc but such that there are two 
nonzero solutions la , I,la2 1 of (4.7). Assume further that 
la,l < la2 1. We wish to comparef(la,l) andf(la2i). Substi­
tuting for Z, in (4.8) gives 

f(la; I) = 2Cp2 + cia; 14 -2cpl a; 12 - (2-rr{J) -312{J-' 

Xgs/2 [exp( -2{Jcl a; 12
)]. 

Let 

g(x) = 2Cp2 + cx4 - 2CpX2 - (2-rr{J) - 3/2{J-lgs12(e - 2{3cx') , 

then g(la;l) = f(la;l) and 

dg = _ 4cx[p _ X2 _ (2-rr{J) - 312g3/2 (e- 2c{3x')]. 
dx 

But is is clear from Fig. I that if lall <x < la21, then 
(p - x 2 ) > (2-rr{J) - 312g 312 (e - 2c{3x'). So for x in this range, 
dgldx <0. Thus, 
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FIG. 2. The free energy density as a function of lal' for four values of p. 

1(lall) = g(lall) >g(la 21) = 1(la2 1)· 
Hence lad is a local maximum off, and la21 is a local mini­
mum (as lal2~psozl-oanddfld lal~oo). Thus the mini­
mizing solution of (4. 3)-(4. 5) is either the one with a = 0, or 
the one with lal = la21 dependingonwhetherf(0)or/(la21) 
is the smaller. 

Letps be the valueofp at whichf(O) =f(la21). Such a 
value exists since at the threshold [i.e., the smallest value ofp 
for which (4.7) has a solution], we have la,l = la21 and so 
I(O)<f(la,l) =f(la2 1), whereas atp =pc,a l = 0 and so 
1(0) = f(la 11»f(la2 1)· It can be shown thatps is unique, so 
that for allp <Ps the minimum isf(O), and for allp >Ps the 
minimum is/(la2 1). (See Fig. 2.) 

We now summarize this. There is a critical density Ps 
such that for p <Ps the state is given by 

f..l(h) = e - IIh 11' /4e - ( ... )/2e(h.A (z,)h )/2, 

wherez, is the unique solution ofp = (2-rr{J) -3/2 g3lz{Z,), For 
p > p s the (gauge invariant) minimizing state is 

f..l(h) = e -llh 1I' /4Jo (Yllallh (0)1 )e - (h.A (z,)h )/2, 

where Z, = e -2ctllal' and lal is the larger solution of (4.7). 

If Ps is to be interpreted as a critical density at which a 
phase transition occurs then it is evident that this transition 
manifests itself in a rather dramatic way. The amount of 
condensate changes discontinuously from 0 to la212. Other 
interpretations using the two local minima of the free energy 
density, and the two critical densities Pc andps are also pos­
sible, but this uncertainty suggests that caution should be 
exercised in the interpretation of approximate states. 
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Geometrical gauge conditions in Yang-Mills theory: Some 
nonexistence results 

Alan Chodosa
) and Vincent Moncriefb) 

Department of Physics, Yale University, New Haven, Connecticut 06520 

We investigate the possibility of defining an "orthogonal" gauge for non-Abelian 
Yang-Mills theory. Such a gauge would generalize, in a geometrical way, the 
orthogonality features of the Coulomb gauge in electrodynamics. We show however that 
such a gauge does not exist (even locally) in the non-Abelian case. Specifically we prove 
that the tangent spaces defined at every point by orthogonality to the gauge group 
orbits admit no integral submanifolds. We also study the question of existence of global 
gauge conditions in phase space. We show that such global gauges, should they exist, 
would induce globally defined gauges in configuration space contradicting Singer's 
result. We thus conclude (modulo certain technical points which might render Singer's 
argument inapplicable to our function spaces) that global gauge conditions in phase 
space do not exist. 

I. INTRODUCTION 

Coulomb gauge plays a special role in electrodynamics. 
The gauge condition 'V.a = 0 serves to eliminate precisely 
the gauge variant part of the vector potential a, leaving only 
the physical transverse degrees of freedom in the theory. 
While Coulomb gauge may not always be the most conve­
nient for calculation, it tends to be the most useful for the 
purpose oflaying bare the structure of the theory. 

To understand why Coulomb gauge is thus distin­
guished, let us consider the configuration space of gauge po­
tentials a. At any point of this manifold, the directions tan­
gent to the gauge orbits are given by the gradients 'Va of 
functions a obeying suitable asymptotic conditions. Now a 
gauge condition determines a surface in the configuration 
manifold, and a geometrical way of defining such a surface 
and thus isolating the gauge variant part of the potential is to 
require orthogonality (in a suitable inner product) of the 
surface to the gauge orbits which intersect it. That is, if j is 
tangent to the surface at the point a, we require 

(1.1) 

for all suitably behaved a. This clearly implies that 'V. j = 0, 
i.e., that the tangent space to the surface at any point consists 
of the transverse subspace of the full tangent space. Any of 
the family of surfaces defined by 

'V.a - / = 0, (1.2) 

where/is a fixed scalar field, has this property. We can 
specialize to the usual Coulomb gauge by requiring in addi­
tion that the surface pass through a = O. 

The purpose of this paper is to see whether this line of 
reasoning generalizes to the non-Abelian case. Our objective 
is to define, at least in some local region of configuration 

alResearch supported in part (Yale Report #COO-3075-225) by the U.S. 
Department of Energy under Contract No. EY-76-C-02-307S. 

hlResearch supported in part by an NSF Grant to Yale, PHY76-823S3. 

space, a submanifold (of the appropriate dimensions) whose 
tangent space at any point is orthogonal to the gauge group 
orbit through that point. Such a surface would generalize, in 
a more geometrical way, the Coulomb gauge condition to the 
non-Abelian case. One knows from the work of Gribov' and 
Singer2 that a global, continuous gauge condition does not 
exist. However, as Singer suggests, one might be able to 
patch together several local gauge conditions to define a (not 
everywhere continuous) global one. Our proposed general­
ization of the Coulomb gauge might then seem to be a natu­
ral candidate for the needed local gauge conditions. 

We shall show however that no such gauge condition 
exists (even locally) anywhere in configuration space. Spe­
cifically we shall show that the subspaces of the tangent 
spaces which are orthogonal to the gauge group orbits at 
every point do not admit any integral submanifolds. The 
geometrical basis for this argument (in a suitable function 
space setting) is discussed in Sec. II. The nonexistence argu­
ment is given in Sec. III. Section IV discusses the possibility 
of global gauge conditions in phase space and shows that 
their existence would imply the existence of global gauge 
conditions in configuration space, contradicting Singer's 
proof. We are led to conclude (modulo certain technical as­
sumptions which might render Singer's argument inapplica­
ble to our function spaces) that global gauge conditions in 
phase space do not exist. 

While writing this paper, we became aware of work by 
Creutz, Muzinich, and Tudron3 in which, among other 
things, they discuss a special case of the problem considered 
here. They show that there is no local orthogonal gauge con­
dition through a = O. Our results show that the point a = 0 
is not exceptional and further avoids using the assumption of 
a "function" defining the hypothetical gauge-orthogonal 
surface. An earlier study of this same question (pointed out 
to us by Michael Creutz) was made by Treat.' His work 
made use of certain elliptic operators which, as Gribov sub­
sequently showed, fail to have globally defined inverses. We 
avoid using such assumptions and thus extend this earlier 
work. 
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II. GEOMETRY OF CONFIGURATION SPACE 

Let G be a g-dimensional, compact, semisimple Lie 
group and let I ea), with a = 1,2, ... ,g, be the Hermitian gen­
erators of a representation of G for which 

(11.1 ) 

and 

(11.2) 

for some constant k. The structure constants/abc may be 
assumed completely antisymmetric. 

A suitable configuration space d for our purposes 
would be a Hilbert or Banach space of vector potentials 
ii = a~a)(x) ea dXi obeying 

tr ( dx 3iii iii = k ( dx 3 a~a) a~a) < 00. (11.3) 
JR' JR' 

Some specific choices for d will be discussed below. 
The main reason we want square integrable potentials is 

that we wish to define the Riemannian metric ®( , ) on d 
by setting, for any pair oftangent vectors i, and t' at ii, 

(11.4) 

Here t and t'ETa,# ;:::;; d so we require d CL2 for ®( , ) to 
be well defined. 

The metric ®( , ) is the natural metric defined by the 
kinetic energy term in the Yang-Mills Lagrangian. It has the 
important property that every guage transformation is an 
isometry (or symmetry transformation) of it. To see this, we 
let ii(.ti ) be an arbitrary smooth curve of vector poten tials and 
ii u(.ti ) be the transformed curve under a fixed gauge trans­
formation U: 

iiu(.ti) = Uii(.ti)U - 1 + iU(dU - I), 

where 

(dU -1) = (a, U -1 dxi). 

(11.5) 

(11.6) 

Differentiating with respect to.ti, we get the transformation 
law for tangent vectors 

t u = ( ~ ii u(.ti ») I = U ( dii(.ti) ) I U - 1 

d.ti '<=0 d.ti '<=0 

= UtU- 1 

or 

tu= UtU -1. 

It follows that 

(tu,tlj)a" = tr ( d 3x (tU);(tlj)i 
JR' 

=tr ( d 3x(Utp- 1Ut;U- 1) 

JR·' 

(11.7) 

(11.8) 

Thus for arbitrary ii and arbitrary gauge transformation U 
acting on d we have, for an t and t'ETad, 

(11.9) 
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which is the isometry property of ®( , ). Many other me­
trics can be constructed which also have this symmetry but 
®( , ) is singled out by the Yang-Mills Lagrangian. 

Suppose.I is a submanifold of d with the property that 
its tangent space Ta.I at any point iiu is orthogonal to the 
gauge group orbit tJ a through ii. We define such a submani­
fold to be gauge-orthogonal. Then we claim that, for any 
UE;§ = the gauge group acting on d, the set.I u defined by 

.Iu = liivEd I iiu= UiiU -I + iUdU- 1 

for some iiu ) (11.10) 

is also gauge-orthogonal. Here the orbit tJ a is defined by 

tJ a = !ii'E.# I iii = UiiU - 1 + iUdU _. 1 
for some UE;§), (11.11) 

and orthogonality means that for any tIETa.I and any 
t",ETa tJ a we have 

(11.12) 

The tangent space to the orbit Tii tJ a is given explicitly by 
the infinitesimal gauge transformations of ii 

Ta tJ a = U:"ETa d I t,,, = dtiJ + i[tiJ,ii] 
for some tiJEll ). 

Here n is a space of Lie algebra valued functions 

(11.13) 

tiJ = w(a)(x)Oa with suitable asymptotic conditions (dis­
cussed below). The orthogonality condition is equivalent to 

o = ( d 3X t ~a)(w~f) - rbCwb a~c» 
JRJ 

= i, d 3X [ai (t ~a)w(a» - w(a)(ai t ~a) - r bc t ~b) a~C» ] 

(11.14) 

for arbitrary tiJEll. For the asymptotic conditions we shall 
use, the divergence term drops out, giving 

(11.15) 

Thus tETa d is orthogonal to tJ a iff it has vanishing covar­
iant divergence 

Va·t=D.t+i[i.,ii] =0 (11.16) 

(where D.t=ai i, and [t~,ii]=[i"ii;]). 

We can demonstrate explicitly that .I u is gauge-ortho­
gonal, as claimed above. Let tu be a tangent vector to.I u at 
some I:0int iiuuu and let hu(tiJ) be an element of Ta, tJ a,' 
Then hu(tiJ) has the form 

h u(tiJ) = dtiJ + i [tiJ,ii u ] (11.17) 

for some tiJEll. We claim that 

(hu(tiJ),tu )a, = 0 (11.18) 

for any such hu(tiJ), tu, and 

iiu = UiiU --I + iUdU -1. (11.19) 

This follows from noting that 

hu(tiJ) = U I d (U -1 tiJU) + i[(U -1 tiJU),iiJ) U -1 

= U(h (U -1 tiJU»U -1, (11.20) 

i.e., that h u(tiJ) is the transform of an element 
h (U -1 tiJ U )ETa tJ a' Furthermore, t u is the transform of 
some tETa.I. To see this, let ii u(.ti ) be any curve in.I u which 
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induces 

tu = (~iiu(A») I at iiu = iiu(O). 
dA A ~O 

(11.21) 

Then, by the definition of .I u, it follows that 

iiu(A) = Uii(A)U -I + iU(dU -I), (II.22) 

where ii(A ) is a curve in.I with ii(O) = ii. Differentiating with 
respect to A gives 

tu = UtU -I, (II.23) 

where tET".I. Since T".I is orthogonal to T" (j'" for any iiE.I 
by assumption, we have 

<i,1i (U - IrJU»" = o. (11.24) 

From the transformation properties of t and Ii derived above 
and the isometry property of ®( , ) under gauge transfor­
mations it follows that 

(11.25) 

proving the claim made in Eq. (II.18). Intuitively .I u is geo­
metrically equivalent to.I since it is just the image of.I under 
an isometry transformation of ®( , ). 

So far we have assumed nothing about the dimensiona­
lity of .I. It is easy to show that at least one-dimensional 
examples of gauge-orthogonal submanifolds exist. One can 
simply take integral curves of any of the invariant vector 
fields which we consider below. However, we are interested 
here only in the possible existence of maximal gauge-ortho­
gonal sub manifolds, i.e., submanifolds.I whose tangent 
space T ~ at any point coincides with the subspace of Tij.J?i, 
which is orthogonal to the orbit through ii. Recalling Eq. 
(II. 16), we see that such a submanifold would have 

T ~ = [tETij.J?i I 'Vij.t-= OJ 
at each iiE.I. Our main result will be to show that such sub­
manifolds do not exist. 

Suppose that a maximal gauge-orthogonal submanifold 
did exist (we shall henceforth let.I represent such a hypo­
thetical submanifold). Then.I would define, at least locally, 
a choice of gauge on .J?i. That is, for any iiE.I there would be a 
neighborhood ff(ii) (in .J?i) of ii in which each potential is 
gauge equivalent to a unique potential in ff(ii)nI. In geo­
metrical terms.I would be a "slice" for the group action of 
f§ on .J?i or, if we view .J?i as a principal fiber bundle over the 
orbit space .J?i I f§ , then .I would be a local cross section of 
.eI. (We remark that the asymptotic conditions discussed 
below ensure that f§ acts freely on .J?i and thus that .J?i I f§ 

would in fact be a manifold.) 
Let ./V(ii) be as above and ii' be any element of ff(a). 

Then ii' is gauge equivalent to some unique iiE.I so we can 
write 

ii' = iiu= UiiU - 1 + iU(dU -I) (II.26) 

for some UEf§. Now define.I u as before and conclude that 
there is a uniquely determined gauge-orthogonal slice 
through each point of ff(ii). Thus the existence of a guage­
orthogonal slice through ii would imply the existence of a 
geometrically equivalent slice through each point in some 
neighborhood of ii. 

The main idea of our nonexistence argument is now 
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easy to outline. We shall construct a set of vector fields over 
,eI, which are everywhere orthogonal to the orbits of f§ . On 
any neighborhood ff(ii) with the property discussed above 
each of these vector fields would be tangetit to the gauge­
orthogonal slices defined through the points of A/(ii). If fol­
lows that the Lie bracket of any pair of such vector fields 
would have to be tangent to the (hypothetical) slice defined 
through any point ofA/'(ii) and thus orthogonal to the orbit 
of f§ through that point. We shall, however, construct a set 
of vector fields which are everywhere gauge-orthogonal but 
whose Lie brackets are not all gauge-orthogonal on any open 
set of .J?i. This will show that no slices orthogonal to f§ exist 
anywhere in .J?i. 

The basic property of Lie brackets alluded to above is 
discussed in the context of Banach manifolds by Lang.5 The 
existence of a neighborhood ff(ii) foliated by gauge-ortho­
gonal slices.Iu would define, in the sense of Lang, a subbun­
dIe of the tangent bundle of ff(ii). Any pair of vector fields 
lying in that subbundle (i.e., tangent to the slice.I u through 
any given point) would have a Lie bracket lying in that sub­
bundle (and thus tangent to the slice .I u through the given 
point). Since our hypothetical slices are orthogonal to f§ , the 
Lie brackets of vector fields tangent to these slices would 
have to be orthogonal to f§. We shall see in the next section 
that this is impossible. 

For our purposes the most convenient representation of 
a vector field X on .J?i is that of a linear, first-order functional 
differential operator acting on the space of real-valued func­
tions Y on ,eI 

,Y -+XY. 

Thus X can be written in component form as 

X = r d 3x[X~G)(ii,X) b ]. 
JR' ba~G)(x) 

(II.27) 

The Lie bracket [ , ] of any pair of such vector fields X, Y is 
then simply the commutator of the two differential opera­
tors. (See Lang5 for a coordinate free discussion of differen­
tial geometry on Banach manifolds.) 

Given a smooth function Y, we can define the gradient 
(or differential) dY to have the "components" bY I bajG\x). 
Using ®( , ), which in this formal notation has the compo­
nents bab bijb(x,x'), we have the associated vector field 

Xd./ = 1. d 3X [ b;~X) ba~~\X) ). (II.28) 

Xd.'/ will be everywhere orthogonal to the orbits of f§ iff 
bY IbajQ) obeys suitable differential and asymptotic condi~ 
tions (so that it defines an element of Tii.J?i at each ii), and It 
obeys the orthogonality condition 

a( b.Y ) _ r bC b,Y a~c) = O. (11.29) 
1 bajG) ba;b) 

Contracting this equation with an arbitrary rJEll and inte­
grating over R 3, we get 

0= r d 3X [ai(w(G) 8Y ) 
JR' ba~a) 

_ (w(a) _ jGbcW(h) a(c») 8Y ). 
,I 1 bajQ) (11.30) 

A. Chodos and V. Moncrief 366 



                                                                                                                                    

With appropriate asymptotic conditions (see below) the di­
vergence term drops out so that the transversality condition 
reduces to the condition that Y be invariant under arbitrary 
infinitesimal gauge transformations (induced by elements 
iJEi1). Conversely. the gradient of an invariant function 
gives rise to a vector field which obeys Eq. (11.29). 

It is straightforward to construct a large class of gauge 
invariant function on d. to derive their associated gradient 
vector fields. and to compute the Lie brackets of pairs of such 
vector fields. We shall do this in the next section for func­
tions of the type 

Y s = tr r d 3X six)f!jJi fiJj. 
JR-' 

(11.31) 

where Si/X) is any smooth symmetric tensor field over R 3 
with suitable asymptotic behavior (it suffices to consider 
functions of compact support) and where fiJ is the magnetic 
field of ii 

fiJi = !€ijk Fjk • 

Fjk = Jj iik - Jkiij - i[iij.iik ]· 

(11.32) 

(11.33) 

Since six) is independent of ii by assumption. it is straight­
forward to show that Y s is gauge invariant. 

In the computations to follow it will be convenient to 
have the following lemma on gauge transformations. We 
claim that for any iiEd and any Xo ER 3 there is always a 
gauge transformation U such that 

iiu(xo) = 0 

i.e .• one can always transform the gauge potential to zero at a 
fixed point in space. In fact this can be accomplished with a 
U of the form U = exp(iw(a)8a). where (wj(xo) = O. To see 
this. we write out ii u(xo) explicitly [putting U (xo) = 1]: 

iiu(xo) = UiiU - I(Xo) + iU(dU - 1)(Xo) 

= ii(xo) + diJ(xo) 
= [a~a)(xo) + Jp>(a)(xo)]8a dxi (11.34) 

and note that one can always choose iJ such that Jp>(a)(Xo) 
= - a~a)(Xo)· 

In a recent paper6 one of us applied Cantor·s7
•
8 weighted 

Sobolev spaces of functions to the study of Gribov degener­
acies. Such spaces have a number of convenient analytical 
properties and were used previously by Cantor7.8 and by Fi­
scher. Marsden. and Choquet-Bruhat9 to solve several out­
standing problems in general relativity. We shall adopt them 
here for our function spaces d and fl. 

Following Cantor we define the Banach space offunc­
tions from R m to Rn (m = 3 in our case) with the norm 

lifll p.s . .5 = L 110"+.5 Da flk. (11.35) 
Q<a<;s 

where 1 <p < 00. 8ER. s is a nonnegative integer. and 
a(x) = (1 + I X 12)1/2 and II Ib is the usual Lp norm on R3: 

lifllLp = (L, d3XlfIPYIP. (11.36) 

Following Cantor. we shall designate these spaces as 
..A"~,.5(R3.Rn) or simply as ..A"fo. With a suitable choice of n. 
one can make ..A"~,.5 spaces of vector potentials d or Lie-
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algebra-valued functions fl. The choice ofp. s. 8 assures cer­
tain differentiability and asymptotic properties. In particu­

lar the space ..A"~,o includes functions which behave asymp­
totically as 

1 
f- Ixl.5+E+(3IP)· Df- Ixl.5+ I +E+(3lp)' 

... Dsf- 1 • 
• I X 1.5 + S + E + (3Ip) 

(11.37) 

where € is an arbitrary number greater than zero and D a 

designates the partial derivatives of order a. 
The choices found most convenient in Ref. 6 were 

fl = ..A"~ . .5' d =..A"~ _ 1,0 + \1 

where 

p> 3. 8 + 3/p;>!. 

s;>3. 0.;;;8 < 1 - 3/p, 

(11.38) 

These ensured the invertibility of certain elliptic operators 
such as the Laplacian and guaranteed the square integrabi­
lity of the potentials. They also ensure that the integrals 

IJ d 3X [J,(w(a) t ~a»] 

vanish identically for iJEi1 = ..A"~,.5 and iETad ;:::;..A"~ _ 1,.5 + I 

since (w(a) t ja» -1/ I x 12 + E' for some €' > O. Though we do 
not require the inverse Laplacian in the present context, we 
shall retain [Eq. (11.38)] for convenience. 

There is a technical difficulty associated with regarding 
the gradients of the invariant functions Y s and their Lie 
brackets as vector fields over d. The variational derivatives 
8Y / 8ii involve the second spatial derivatives of ii and so, for 
a generic iiEd. are less differentiable than necessary to lie in 

Tad ;:::;..A"~ _ 1 • .5 + I' However. we can restrict the definition 
of these gradients to the dense subspaces (k = 0,1.2 ... ·) 

g; k =..A"~ + k,o + I C..A"~ _ \,.5 + I' (11.39) 

On g; I the gradient fields Xd,'7, are densely defined vector 
fields. i.e .• Xd'7,(ii)ETad for all iiEg; I . Similarly the Lie 
brackets 

[Xd.'7,'xd.'7,] 

are defined on the dense domain g; 3 Cd. 
This necessity of restricting the domain of definition of 

"vector fields" to subspaces of the original configuration (or 
phase) space is a common problem in the Hamiltonian dyna­
mics of infinite dimensional systems. It is discussed exten­
sively by Chernoff and Marsden in Ref. 10. It arises there for 
the same reason that it occurs here; one "loses" derivatives in 
taking the gradient (or symplectic gradient) of some relevant 
function (e.g .• the Hamiltonian). 

A natural way of circumventing this complication (pro­
posed to us by J. Marsden II) is to require that our hypotheti­
cal submanifolds ~ restrict to submanifolds of g; I and g; 3 

as well. i.e., that ~ng; I and ~ng; 3 are submanifolds of g; 1 

and g; 3. respectively. In this case one can show that the Lie 
brackets of the gradient vector fields we construct would 
have to be tangent to ~ at every point of ~ng; 3' the dense 
domain on which these brackets are defined. By showing this 
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to be impossible we rule out the existence of such gauge­
orthogonal slices. 

The asymptotic behavior of the potentials required in 
Eq. (11.38) allows potentials which decay as ii - 11 1 X 1

312 + '. 

This is a minimal requirement for the potentials to be square 
integrable. Ifwe want sf' to be a vector space (rather than say 
an affine space obtained by "shifting" J(~ -1./j +1 by some 
fixed potential ii* with different asymptotic behavior) on 
which the metric @( , ) is well defined, we need this square 
integrability. Note, however, that this requirement excludes 
configurations with non vanishing magnetic charge for 
which a -1I1xl behavior would be needed. The reason such 
monopoles are not excluded a priori in Yang-Mills theory 
(by, say, the requirement of finite energy) is that the metric @ 

enters the Yang-Mills Hamiltonian only through the con­
traction of the electric fields. This contraction reduces to an 
inner product of velocities aii/ at (i.e., tangent vectors in sf') 
only in a gauge with aD = o. This @( , ) is not, strictly 
speaking, a natural metric to define on sf' unless one de­
mands that aD = 0 always be an allowed gauge condition. 

III. THE NONEXISTENCE THEOREM 

In this section we shall use the family of gauge invariant 
functionals 

Y s [a] = t; i, d 3X sij(x) %I~a)(x) %I?)(x), 

where 

(111.1) 

%I~a)==¥ikl (ak a~a) _ a, a~a) + I abc a~b) a~e» (111.2) 

is the magnetic field and sij(x) is an arbitrary smooth sym­
metric tensor field with compact support on R 3. The vector 
field 

Xd'7,=%. (111.3) 

associated with each such functional is defined as in Eq. 
(11.28). We shall compute the Lie brackets 

[X,,i;,1=X,,, (111.4) 

of pairs of such vector fields and show that they cannot be 
orthogonal to the orbits of Y for all possible sij(x) and sij(x) 
on any open set in functional space. This will show that no 
Y -orthogonal slices exist. 

The Lie bracket of %. and %., is given by 

- - f 3 f 3 [OYs 0
2 

Y s' 
[X, ,X" 1 = JR' d Y JR' d x 8a~a)(x) oa~a)(x) oay)(y) 

oYs' 02ys ] 0 

- oaja)(x) oa;a)(x) oaJb)(y) 0 ajh)(y) 

= .L d 3
y (Xss,)Y) (y) oa5~)(Y)' (111.5) 

Now we wish to test whether 

0= aJ (X"' )5a) (x) + I abc a?) (x)(Xss' )Y). (111.6) 

We know, from the gauge invariance of Y s and Y s" that 

a. ' + I abc alb) (x) __ s_ = 0 
( 

oY ) oy 
J oa?)(x) J oaY)(x) 

(III. 7) 
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and similarly for Y s" Thus we have 

[aJ oae + I abc a?) ] (%.s' )y)(x) 

= r d 3y s (a 8ae + I abc alb»~ __ s_ 8Y [ 8Y, ] 
JR' oa;a)(y) J J 8aY)(x) 

8Y oY, 
I abc ' s (Y Y) 

- 8a5b)(X) 8aY)(x) - s~ s' 

-2 I abe 8Ys 8Y, (III.8) 
8a5b leX) oaY)(x) 

So, in order for a Y -orthogonal slice to exist through aD , we 
must have 

8Y 8Ys' Q (a)(a,x) f abc s -- = 0 (111.9) 
8aY)(x) 8aY)(x) 

for all a in some neighborhood of aD and for all choices of Y, 
and Y s" Note that we shall encounter no trouble in the 
Abelian case for which I abc = O. This accords with our 
knowledge that the surfaces defined by V·a = I(x) are y. 
orthogonal slices in that case. 

Returning to the non-Abelian case, we evaluate 

o<'7s _ 21 d 3 [ ()%I(a)() 8%1<:)y ] (IIUO) 
(b) - Y Sik Y i Y ~ (b)( ) 8aJ (x) R' uaJ x 

and find, with the definition [Eq. (111.2)] of ?iJ, that 

(111.11) 

where 

C ~b lex) Ski(X)%I~b)(X). (111.12) 

In order to simplify the succeeding steps, let us imagine 
that we are seeking to verify the equation 

Q (a)(a,x) = 0 (111.13) 

at some point x for a particular choice of a. Since this equa­
tion must hold for all possible choices of sand f, we can 
choose them both to vanish at x and regard their derivatives 
am sij(x) and am sij(x) as arbitrary parameters (symmetric in 
i andj). Then Q (a)(a,x) = 0 implies 

lobe €Jmk EJnl(amSkJ(am Sip) %I;b) (X)%I~e)(X) = O. (III.14) 

Symmetrizing in the index pairs (kl) and (lp), we derive the 
requirement 

o = I abe(EJmk EJnl %I ib) %I ~e) + EJmk EJnp %ljb) %I ~e) 

+ EJmi EJnl %Itt) %l1e) + EJmi EJnp %Itt) %I~e», 
=lobe[(omnokl_omIOk")%llb) %I~e) 

+ (8 m"o kp _ 8 mp 0 k")%I~b) %I\e) 

+ (0 m"o il _ 8 ml 8 i")%I<{) %l1e) 

+ (8 m"Oip _ 8mp 8i")%I<{) %I~c)]. (III. 15) 

Now let us choose, for example, m = n = 1, k = 1= 2. we 
have 
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The last term vanishes by the antisymmetry of/ abc. Since i 
and p are still at our disposal, we deduce 

o =/obc .c?lj'~b) .c?lj'~c>, i,p = 1,2,3. (111.17) 

So it remains to show that this condition cannot be satisfied 
everywhere throughout any neighborhood of the given point 
a. To do this, we shall show that if the condition holds at ao , 
one can always find arbitrarily small perturbations of ao 
which violate the condition. 

For this purpose we need the following 
Lemma: It is always possible, by an appropriate pertur­

bation 8a~a)(x) of a~a)(x), to induce an arbitrary perturbation 
o.c?lj'~a)(xo) in &Jia){Xo) at some fixed point Xo. 

Proof If we perform a gauge transformation with some 
fixed U (x), then 

.c?lj' [(x) = U (x).c?lj' i(X)U -I (x) (III. IS) 

and similarly 

o.c?lj' [(x) = U (x)o.c?lj' ;(x)U -I (x). (111.19) 

By the lemma at the end of Sec. II we can always choose U so 
that a;O)(xo) = O. In this gauge let us choose, near x = Xo 

oa,~(a)(x) = C~(xj - xb) (111.20) 

with Cij = - Cij. Then 

o.c?lj' ~(a)(xo) = !E kij(a;oa;(a) - ajoa;(O»(Xo) 

= -Ekij Cij. (III.21) 

Defining 

(III.22) 

we have 

Cij = - ~ E ijkO.c?lj' ,,(xo) 

- ! E Ijk U (xo)b.c?lj' k (xo)U -I (Xo). 

Since the constants Cij can be chosen arbitrarily any desired 
value for b.c?lj' k (Xo) can thus be achieved. 

Now suppose that Eq. (111.13) is satisfied at some point 
ao' We shall show that it cannot be satisfied throughout any 
neighborhood of aD by appropriately selecting 8?lJ . 

There are two cases to be distinguished. 
Case I: / abc .c?lj' ~c)(x) is not identically zero for all p and 

all x. Suppose in particular that/ abc .c?lj'~~)(xo)7"=O. Then we 
have 

o =/ abc .c?lj' \b )(X ).c?lj' (c)(X ) 
I 0 P(l 0 (111.23) 

and we let .c?lj'ja)(xo)_.c?lj'jO)(xo) + o.c?lj'ja)(xo) where, by the 

lemma above, we can regard o.c?lj' j")(xo) as arbitrary. If condi­
tion (111.13) is to be satisfied every where in a neighborhood 
of ao, then we must have 

o =/obc [o.c?lj'\b)(XO).c?lj'~>Cxo) + .c?lj'\b)(XO)o.c?lj'~:)(xo)]. 
(111.24) 

Let us choose o.c?lj' ~~Yxo) = O. Then o.c?lj' fb)(Xo) is still arbi­
trary for i7"=Po' Then the only way Eq. (111.24) can hold is to 
have 

(111.25) 

which contradicts our assumption. 

Case II:/ abc .c?lj'~C) (x)=O. In this case the first order 
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variations of Eq. (111.17) vanish so we must consider the 
second order variations which are 

/ abc b .c?lj'~b)(Xo)b .c?lj'1C
) (xo). 

For this to vanish for arbitrary b?lJ, we must require/ abc 
= 0, which contradicts our assumption that the gauge 

group is non-Abelian. 
This completes the proof that, for non-Abelian gauge 

theories, no f§ -orthogonal slices exist even 10calIy in func­
tion space. Roughly speaking, the orbits are sufficiently 
"twisted" in function space that no local slices can be ortho­
gonal to every orbit which intersects it. 

It is important to remember that the question of exis­
tence of orthogonal slices to a particular group action de­
pends crucially upon the metric used to define orthogona­
lity. Consider, for example, Euclidean 3-space in cylindrical 
coordinates for which 

ds2 = dp2 + dr + p 2dq; 2. (UI.26) 

The vector field 

G = J.. ~ + !-.-, (UI.2 7) 
I aq; az 

where I is a nonzero constant, defines a group action on this 
space whose orbits are the helical curves 

p(J..) =Po, 

z(J..) =Zo +J.., 

q;(J..) = q;o + J../I, 

where Po' zo, q;o are constants. 

(II I.2 Sa) 

(III.2Sb) 

(IH.2Sc) 

Since the metric is simultaneously invariant under both 
translations along, and rotations about, thez axis, it is invar­
iant under the helical motion defined by their combination 
(i.e., the motion generated by G). Any single orthogonal slice 
through a point p could therefore be dragged along the orbits 
of G to yield a neighborhood of p filled with orthogonal 
slices. We can prove, however, that such slices do not exist 
by displaying a set of vector fields orthogonal to G whose Lie 
brackets are not orthogonal to G throughout any open set in 
the space. For example, we can define the gradient fields of 
the invariant functions 

(IH.29) 

where c is an adjustable constant. Computing these vector 
fields and their Lie brackets, one finds 

[Xdh~d·G = - (P2/1) cos(q; -z/l + c). (HI.30) 
This vanishes for alI values of c only on the axisp = 0 and so 
not on any open set. 

However, if we take the alternative metric 

(dS')2 = dp2 + dz2 + p2(dq; - dz/l)2, 

then the coordinate transformation 

(III.31) 

p' = p, z' = z, q; , = q; - z/l (III. 32) 

reduces (ds'? to Euclidean form and the "helical" curves to 
vertical lines. In this case the existence of orthogonal sur­
faces z = const is obvious. 

IV. CONCLUDING REMARKS 

In this paper we have formulated a criterion, gauge-
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orthogonality, by means of which we tried to find a Cou­
lomb-like local gauge condition in Yang-Mills theory. We 
have shown that in configuration space, gauge orthogonal 
surfaces do not exist. In addition, we know from the work of 
Singer2 that in configuration space no global gauges exist. 
The question arises as to whether if we work in phase space 
instead of configuration space, either or both of these restric­
tions can be circumvented. 

It turns out that the question of gauge-orthogonality is 
clouded by the fact that no obviously natural metric exists on 
phase space, and, as we pointed out above, the choice of 
metric is crucial for orthogonality. Instead of pursuing this 
question we shall devote the remainder of this section to 
showing that since, as Singer has proved, there are no global 
sections on configuration space, then there cannot be any on 
phase space either. 

The phase space for Yang-Mills theory may be regard­
ed as a space of pairs (a,e), where a and e are the potential and 
electric field respectively. We shall abbreviate this space as 
T*.w' = the cotangent bundle of .if. Some specific models 
for T * .if using j(~.b spaces are discussed in Ref. 6. 

The gauge group f1 acts on T * .if in a well-known way: 

a_UaU -I + iUdU -I, 

e = UeU -1. 

(IV.la) 

(IV.lb) 

Ifwe consider only gauge transformations which reduce to 
the identity as Ixl-oo, we find, as in Ref. 6, that f1 acts 
freely on T * .if (i.e., no point (a,e) remains fixed under any 
infinitesimal gauge transformation other than the trivial 
(identity) transformation). In this case we may regard T*.if 
as a principal fiber bundle over the quotient space T * .if I f1 , 
and it is natural to ask whether T * .if has any global cross 
sections. 

Let us formulate this question more explicitly. Does 
T*.if admit a submanifold which intersects each of the or­
bits of f1 at one and only one point? The orbits of f1 in T * .if 
are, of course, just the equivalence classes of gauge equiv­
alent pairs (a,e) and the existence of a global section would be 
equivalent to a continuous global choice of gauge (to get the 
strongest possible result Singer assumes only continuous sec­
tions; for simplicity we shall look for differentiable ones). 

The main idea for reducing the question of existence of 
global sections of T * .if to that of global sections of .if is to 
note that the submanifold defined by e = 0 may be naturally 
identified with .if itself and consists entirely of orbits of fI} 
acting in T * .if (i.e., all gauge transformations preserve 
e = 0). If ~ * were a global section of T * .if, then the intersec­
tion of ~ * with .if (regarded here as the submanifold e = 0 in 
T * .if) would intersect each of the orbits of .Q/ at one and 
only one point. Therefore, we need only to show that ~ *n.sof 
is a submanifold of .if to conclude that it defines a global 
section of .if. 

This last step follows from noting that the intersection 
of the two submanifolds ~ * and .w' is transversal, 12 i.e., that 
at every point (a,O) of the intersection the tangent spaces 
T(ii.O~ * and T(ii.OYw' together span T(ii.O)(T* .if). Formally 
at least this result follows from the assumption that ~ * is a 
global cross section of T *.w' and the observation that the 
base space.w' consists entirely of orbits of fI}. Near any point 
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(a,O)E.2' *n.w', ~ * provides a slice for the group action on 
T *.w'. Therefore, T(ii,O)(T * .if) is spanned by T(ii.O~ * and 
the tangent space to the orbit through (£1,0). However, 
T(ii.O/f, the tangent space of this orbit, is a subspace of 
T(ii.O).if since .w' consists entirely of orbits of fI} . Hence for 
every (a,O)E.2' *n.if we have 

T(ii.O~ * + T(a,Q)'w' = T(ii.O)(T * .if), 
and the intersection is transversal and therefore a manifold. 
Since the existence of such a manifold would contradict 
Singer's result, we must conclude that no global section of 
T *.Q/ exists. 

The above formal argument does not adequately treat 
the question of appropriate function spaces and asymptotic 
conditions. Singer considered C oc fields which can be com­
pactified toS 3 while we have taken JI~.8 spaces with asymp­
totic conditions on JR3. Subtleties in the different treatment 
of asymptotic conditions might prohibit the application of 
Singer's theorem to our configuration space. Nonetheless, 
the above argument shows that the question of existence of a 
global section in T*.if is reducible to that of the existence of 
a global section in .w'. 

A modified form of the above question is to ask whether 
global cross sections of the constraint submanifold6 of phase 
space exist. This question makes sense since the constraint 
subset is a submanifold of T * .if (see Ref. 6), which consists 
entirely of orbits of fI} (i.e., the constraints are preserved by 
gauge transformations). However, the constraint manifold 
contains the e = 0 space as a submanifold which may again 
be identified with the configuration space .if. The remainder 
of the argument is precisely as before, and we conclude that 
global sections are excluded since none exist for .w'. 

Another recent paper (pointed out to us by the referee) 
which discusses, for the SU(2) gauge theory, the nonexis­
tence of global gauge conditions in phase space is that of 
Narasimhan and Ramadas.13 They also derive some interest­
ing geometrical results concerning the connection on the 
bundle .w' _.if I f1 defined by the constraint equations re­
stricted to the a~a) = 0 gauge. The horizontal subspace de­
fined by this connection at any point of .if coincides with 
what we have called the orthogonal subspace at the point. 
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Employing the L'Huillier, Redish, and Tandy (LRT) wave function formalism we develop a 
partially connected method for obtaining few-body reductions of the many-body problem in the 
LR T and Bencze, Redish, and Sloan (BRS) formalisms. This method for systematically 
constructing fewer body models for the N -body LR T and BRS equations is termed the dominant 
partition method (DPM). The DPM maps the many-body problem to a fewer-body one using the 
criterion that the truncated formalism must be such that consistency with the full Schrodinger 
equation is preserved. The DPM is based on a class of new forms for the irreducible cluster 
potential, introduced in the LR T formalism. Connectivity is maintained with respect to all 
partitions containing a given partition which is referred to as the dominant partition. Degrees of 
freedom corresponding to the breakup of one or more of the clusters of the dominant partition 
are treated in a disconnected manner. This approach for simplifying the complicated BRS 
equations is appropriate for physical problems where a few-body reaction mechanism prevails. 
We also show that the dominant-partition-truncated form of the BRS equations may be obtained 
by distributing the residual interaction in the exit channel in a manner consistent with the 
dominant partition truncations of the irreducible cluster potential. 

I. INTRODUCTION 

Connected kernel equations (CKE's) have enjoyed con­
siderable prominence in the recent history of reaction the­
ory. The equations due to Alt, Grassberger, and Sandhas l 

(AGS), Bencze, Redish, and Sloan2 (BRS), and Kouri, Le­
vin, and Tobocman3 (KLT) are representative examples. In 
the formalisms of AGS, BRS, and KLT the many-body scat­
tering problem is formulated in terms of a set of coupled 
integral equations for the transition operators. These CKE's 
are often viewed as extensions of the three-body formalism of 
Faddeev.4 

Although the CKE's provide mathematically correct 
formulations of the N-body scattering problem, these equa­
tions have not inspired extensive usage in direct reaction 
analysis. The distorted wave Born approximation continues 
to be the primary method employed in the analyses of direct 
reactions. Significantly, there exists in the community an 
understanding that many-body effects should be included in 
reaction analysis;S however, the CKE's are not generally re­
garded as offering a viable approach for such inclusions. 
Even in the three-body case, the Faddeev equations are often 
regarded as useful for mathematical proofs but not as feasi­
ble for calculations. 6 

The complicated nature of CKE's as well as an uncer­
tainty about how the dynamics is distributed in these equa­
tions have been important factors in limiting the role of 

·"Work based on material submitted in partial fulfillment of requirement 
for Ph.D., University of Maryland, 1977. 

"'Supported in part by U.S. Department of Energy. 
"N.R.C.-N.A.S. Senior Resident Research Associate. 
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CKE's in reaction analysis. Necessarily any use of CKE's 
must involve truncations. This compelling necessity for 
methods of truncating CKE's probably has contributed to 
their limited use. 

The application of the CKE's to nuclear and atomic 
systems is rendered difficult because of the number of equa­
tions involved and the fact that many channels are treated 
theoretically on an equal footing. We therefore consider 
what simplification can be achieved by reducing the number 
of equations and/or channels. In practice, since certain 
channels may be ignored or treated phenomenologically, it 
may not be necessary to preserve connectedness in them. We 
call the formalism derived from relaxation offull connected­
ness in a set of CKE's a partially connected formalism. A 
partially connected approach has been advocated by Hahn 
and Watson as a means of circumventing the difficulty im­
posed by the coupling of all rearrangement channels in the 
three-body problem.7 

The choice of criteria by which one truncates a CKE is 
an open question. A possible approach to simplifying these 
equations for some problems is to map the many-body space 
into that of a fewer-body problem. This approach will be 
useful in the case that the physics seems to be dominated by a 
few-body mechanism. One example is the deuteron-alpha 
scattering at energies below the threshold for breakup of the 
alpha. Notably, such a mapping does not destroy all of the 
many-body information which would be lost in the arbitrary 
imposition of a few-body model on a given many-body 
system. 

Actually, when one considers such a truncation it be­
comes clear that many of the CKE's do not lend themselves 
to such a reduction method. The AGS and KL T equations 
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are notable examples. The explicit dependence on the num­
ber of particles as exhibited by the AGS equations and the 
dependence on the number of channels as exhibited by the 
KLT equations tend to make the structures of these equa­
tions rather rigid. The AGS equations make explicit the 
number of particles through kernels which contain all sub­
system transition operators. The KL T equations are written 
for a fixed number of channels which structurally excludes 
the possibility of later dropping one of the channels. 

In this article we develop a method of truncating the 
many-body BRS equations to a fewer-body problem. The 
method is developed in the LR T8 connected-kernel wave­
function formalism, and is similar in spirit to the Hahn­
Watson reduction method. 7 This truncation is termed the 
Dominant Partition Method (DPM). It maps the given 
many-body problem to a fewer-body problem whose solu­
tions satisfy the full Schrodinger equation. The equations 
obtained constitute a partially connected set, the disconnect­
edness appearing in those channels which are not considered 
explicitly. 

In Section II the LR T wavefunction formalism and the 
related irreducible cluster potential are reviewed. In Section 
III the dominant partition theorem is presented and in Sec­
tion IV this reduction method is applied to the BRS equa­
tions. In Section IV it is also shown that the reduced set of 
BRS equations may be obtained via a distribution method. 
The summary and conclusion are presented in Section V. 

II. THE L'HUILLIER, REDISH, TANDY WAVEFUNCTION 
FORMALISM 

In this section a set of coupled connected kernel equa­
tions for the wave function describing the scattering between 
many-body (N)4) clusters is obtained. These equations are 
derived by using the BRS equations and the Green function 
for the system. The system under consideration has N distin­
guishable particles which interact via two-body potentials. 
(The case of three- and many-body forces is not considered 
here.) A division of the N particles into n clusters is termed 
an an -partition. The Greek alphabet is used to label two­
cluster partitions and the N-cluster partition is labelled O. 
The partition Hamiltonians Ha, residual interactions va and 
associated Green functions are defined by 

Ha =Ho + Va' 

va=H-Ha, 

(1) 

(2) 

(3) 

where Va is the sum of two-body interactions internal to the 
a-partition and Z is the complex energy parameter 
(Z = E + ie). The full and free Green functions are given by 

G=(Z-H)-l, (4) 

Go = (Z - Ho) - 1, (5) 

where H is the full N-particle Hamiltonian and Ho is the 
total kinetic energy operator. 

Consider the N-body scattering problem initiated by in­
coming bound states of the two clusters comprising the par­
tition /3. The full wave functions is9 
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Wf3 = limieGlPf3 ' (6) 
€_o 

where lPf3 describes a relative motion plane wave times the 
internal bound-state wavefunctions for the two clusters. The 
Green function is expressible in terms of G f3' 

G = G{3 + GVf3G{3 . 

Using that 

G{3lP{3 = (ie) - IlP{3 , 

we obtain 

Wf3 = (1 + GV(3)lP{3 . 

Using (7) we have 

W{3 = GG f3- IlP{3 . 

Noting that 

(7) 

(8) 

(9) 

vaW{3 = ra{3lP{3 , (10) 

where Ta{3 is a transition operator lO we write (9) as 

W{3 = GoG {3- llP{3 + Go T°{3lP{3 . (11) 

Employing the BRS equation2 

(12) 
a 

we obtain 

W{3 = Go(G {3- 1 + V(3)lP{3 + I GoKr:Go T<J{3lP{3 . (13) 
if 

(The operator satisfying the BRS equation differs from the 
standard transition operators by an off-shell transformation. 
See Ref. 2.) In (12) V/'J is the sum of two-body interactions 
internal to /3 and external to a. The kernel K ~o is the sum of 
all Weinberg graphsll of connectivity2 (J which begin with 
any interaction and do not end with an interaction in a. De­
fining Kr:=Ka , using (3) and (10) we have 

(14) 

This integral equation has a completely connected kernel. 
The operator K a is the sum of all (J-connected Weinberg 
graphs. 

Decomposition ofthe wave function into parts associat­
ed with the two-cluster partitions of the N-body problem is 
achieved by writing 

IT, _ ~ IT, (yJ Y!'{3-.{..;Y!'{3 , (15) 
y 

where 

W{3 (y) = lP{38y{3 + GoKyGo VYW{3 . (16) 

The wave function W~Jl only has outgoing waves of the r 
type, that is, bound clusters of the r partition or direct 
breakup from the r partition. Equation (16) may be written 
in a convenient form by considering again (9) and writing G 
in terms ofGy • We find 

W{3 = GyG {3-1lP{3 + Gy VYGG {3-1lP{3 . (17) 

Using (9) and (10) we have 

W{3 = GyG {3-1lP{3 + GyTy{3lP{3 . (18) 

Multiplying from the left by GoG y-l we have 
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GoG ;-1 1/If3 = GOG pi <Pf3 + GO T 1'f3<Pf3 . (19) 

Using (19) in (16) we get 

1/If3(1') = (t>1'f3 - GoK1'GoG f3-
1 )<Pf3 + GoK1'GOG;1 1/If3 . (20) 

We introduce the operator 'Y l' which is defined by 

(21) 

The operator 'Y'" is termed the irreducible r connected po­
tential. It is the sum of r connected graphs which become 
less than r connected if the rightmost interaction is re­
moved.s We have 

1/If3 (1') = (t>1'f3 - Go 'Y1'G1'G f3-
1 )<Pf3 + Go 'Y'1' 1/113' (22) 

and Go ']/~ 1'G1'G 13- 1 on shell is the same as Go 'Y f3t>p1" This 
yields 

1/1(/1') = t>yf3(1 - Go 'Y'(3)<Pf3 + Go 'Y l' 1/If3 . (23) 

Noting that 

(1 - Go ')/~f3)<PP = 0, (24) 

which is most easily seen on examining the anticluster ex­
pansion for 'Y 13 (Section III), we obtain 

1/113 (1'\ = Go 'Y y 1/If3 . (25) 

We write this in differential form as 

(E-Ho-'Yy)I/I}Jl='F'y I 1/1<;), (26) 
0(#1') 

which is reminiscent of the Faddeev three-body result. These 
are the LR T8 equations. The relation of these equations to 
other N-body eKE's is discussed in detail in Ref. 12. 

III. THE DOMINANT PARTITION THEOREM 

The anticluster expansion for the kernel in the BRS 
equation has been previously shown to be l3 

N-\ 

K~oGo = L L N(u,arn)V~",Gam' (27) 
In -= 2 (a:J)u m 

The N's in the above equation are termed counting coeffi­
cients.13 They depend on both u and am . From (21) we have 
the anticluster expansion for the irreducible cluster 
potential: 

N--I 

'1/" = L I N(u,am)Va,.Ga",G;;I. (28) 
m '----= 2 (a:J)a ... 

Summing the components of equation (26) we note the 
interesting result that 

(29) 

This property provides the underpinning for the truncation 
of the BRS equations that will be presented in this section. 
Insight into the method is afforded by the following 
theorem. 

Theorem I. For arbitrary N, if 'Y C7 is given exactly then 

where V is the full potential and 1/If3 solves the Schrodinger 
equation for the N-body system. 
It is clear that this must be the case from a comparison be-
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tween (29) and the Schrodinger equation 

(E - Ho - V)tP{3 = 0 . 

Nonetheless, we give a more complicated proof whose struc­
ture generalizes to the approximate case discussed below. 

Proof From (28) we have 

Interchanging sums and using 
G -I = G -I _ V am ....... 

a- am a' (J -..Jam' 

we have 

Noting that 

V:m = 1/" - Va", = Va", - va, u:>am , 

we obtain 

X (1 - Ga", Va", + Gam V,I/If3 . 

We use the result, 14 

1/I{3 = t>{3a", <P{3 + Ga", va"'l/Ip 

to obtain 

N-1 

= V{3<P{3 + L L L N(u,am)VamGamV"I/If3' 
m=2am (::>a m) 

It is known 15 that 

I N(u, am)Va = Cm va,., 
M::Ja m ) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

where Cm = (-1) m(m -I)!. Using this in (36) and again 
employing (35) we obtain 

N-I 

I 'r" 1/If3 = I Cm I Va",l/If3 . (38) 
rn = 2 am 

Now we employ the lemmas: 

Lemma 1:16 I V;: = S<;~I va"" and (39) 

N --I 

Lemma 2: 17 L CnS~~l = 1, N';?3. (40) 
n=2 

TheS<;~1 are Stirling numbers of the second kind. S<;)I IS 

the number of distinct ways of making k clusters out of 
(N -1) objects. From (38) we now obtain 

(41) 

This means that (29) with the u sum taken over the two­
cluster partitions is the Schrodinger equation. This result 
motivates the consideration of truncations of~" and/or 'Y" 
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such that the corresponding summed version of(29) remains 
the full Schrodinger equation. We present a method which 
satisfies this condition through the following results. 

Remark: For a given N, if r a is given exactly the sum 
(l:r a 1JIf3) over an arbitrary subset of the two-cluster parti­
tions does not result in (E - Ho - l:a r a)lJIf3 = Obecoming 
the Schrodinger equation. 

Example: Consider the caseN = 3forwhichra = Va' 
We labelthe possible a's as a l = (1)(23), a2 = (2)(13), and 
a 3 = (3) (12). Note that 

(42) 

(43) 

Remark: For a given Nand r a truncated arbitrarily 
then the sum over alIa does not result in (E - Ho 
- l:all a r~ 1JIf3 = 0) becoming the Schrodinger equation, 

where r~ is a truncated version of ra' 
Example: Consider N = 4 and suppose we truncate r a 

by taking r" ~ r~ = Va, so 

I r~ 1JIf3 = I Va 1JIf3 . (44) 
all a all u 

From Lemma 1, l:a Va- = S~)_ I V and we have 

I 'r~lJIf3 = S~2)VIJlf3 . (45) 
all a 

We now introduce notation to represent a particular 
class of truncations of the irreducible cluster potential. The 

operator r~'" is defined as the truncation of the anti cluster 
expansion (28) of r a which includes only those terms corre­
sponding to the partitions that can be formed by joining the 
clusters of a single "dominant" partition am' with 
3 <m <N - 1. Explicitly this is 

r~;" = f I N(a, an)Va"Ga"G (T- I. (46) 
n = 2 «(T::J)a"CdG",) 

This class of truncated operators allows us to introduce the 
dominant partition theorem (DPT). The term dominant 
partition derives from the role played by a fixed partition am 
in the truncation of 'Y'" and in limiting the sum on two­
cluster partitions. 

Theorem 1/: (dominant partition theorem): For arbi­
trary N, and an arbitrary fixed partition am 

I r:·lJlfJ = VIJlf3 ' 
0(::00 .. ) 

where 1JIf3 solves the Schrodinger equation for the N-body 
system (3<m<N -1). 

Proof: Using the definition (46) gives 

I 'Jr;,"'IJIf3 = L f L N(a, an) 
0(::00 .. ) 0(::00 .. ) n ~ 2 (a)::Oo"(;2o,,,) 

X Va" Go" G ;11JIf3 . (47) 

We write (46) in a more convenient form by picking otfthe 
am term 
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+ L N(a,am)Vo .. GomG;llJIp. (48) 
0(::00 .. ) 

Again employing (31) we obtain 

L r: .. lJlp = L [1:1 

L N(a, an)Vo• 
0(::00 .. ) 0(::00 .. ) n ~ 2 (a::O)a,,(;20m) 

x(l- Go" V::''') + N(a, am)Vam 

X (1 - Go .. V::.'") J 1JIf3 . (49) 

Using (33) and (35) we have 

L r: .. IJlf3 = Vf3CPp + 
o(::Oa m ) 

X Va" Go,yalJlp + L N(a, am) 
0(::00 .. ) 

X Va .. Go .. ValJlp . (50) 

Interchanging sums we have 

X Va. Go" valJlf3 + L N(a, am) 
0(::00.,) 

X Va .. Go .. ValJlp . (51) 

Use of (37) and (35) yields 

L r::,mlJlf3 = (1:1 

L Cn Va" + Cm Vo .. )lJIp . 
0(::00 .. ) n = 2 0,,(;20.,) 

We now use l6 

Lemma 3: 

" Va .. = s(n) Va", . 
£... a" m-l 

0,,(::00 .. ) 

This yields 

=[:~~ Cn(S~)Va .. +S~)_1 vam)+CmVa.,] 

(52) 

(53) 

X 1JIf3 ' (54) 

where we have used (33) (with a replaced by an) to express 

Va" in (52) as Va", + V:::'. 

Noting the results 
m-I 
" C S(n) = 1 - C £..t n m m (55) 

n=2 

and 
m-I 

L CnS~) 1 = 1, (56) 
n-=2 

which follow from Lemma 2 we have 

L r:"Pf3 = VP{3' Q.E.D. (57) 
0(::00,,,) 

Theorem II provides the basis for the DPM. It shows 
that we may truncate '?~ a through the anticluster expansion 
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by retaining only those partitions that contain a given domi­
nant partition. Note that the full partition Green functions 
Ga " are retained in (46). They are not projected on the Hil­
bert space corresponding to bound states of the dominant 
partition am' The description of the breakup of these clusters 
is contained in these Green functions. 

The reduced problem is then solved by solutions to the 
original Schrodinger equation. This theorem provides a con­
sistent means of reducing the many-body problem in the 
LRT wavefunction formalism to a few-body problem. 

Nuclear reactions are commonly analyzed in terms of a 
few-body picture. For a given N there are S~) = 2N - 1 - 1 
two-cluster channels. Any realistic attempt to solve the 
many-body problem cannot treat all of these channels on an 
equal footing. Moreover, it is reasonable to expect that in 
direct reactions the processes involved are not so extensive 
that all possible rearrangement and inelastic processes must 
be included. In many cases a realistic approach to many­
body reaction theory will be afforded by systematically 
building few-body models. 

IV. THE DOMINANT PARTITION AND THE BRS 
EQUATION 

We now obtain dominant partition truncations of the 
BRS equations. This is accomplished by restricting the sum 
on two-cluster partitions to the class defined by u(::>am ), 

where am is taken to be the dominant partition. Corespond­
ingly we introduce the appropriate truncation of the BRS 
kernel by using the anticluster expansion (27). Restricting 
the sum on two-cluster partitions to those that contain a 
particular am terminates the anticluster expansion with that 
term explicitly involving am' We write the truncated kernel 

as K~~;, that is 

K~~; = f L N(u, atl)V~"Ga" . (58) 
n -:.- 2 «(r~)a"(:2a,,,) 

With (3,a( ::>a m ) we write the truncated BRS equations as 

Tria = V7, + L K~~T(m. (59) 
M:::>u,,,) 

It will be recalled that in the derivation of the BRS 
equations that a crucial step was the democratic distribution 
of the residual interaction over all partitions. 16 If we restrict 
the distribution to those partitions containing am and pro­
ceed with the derivation, are the truncated equations ob­
tained the same as those we have termed the dominant parti­
tion truncated BRS equations? The answer is yes and 
provides the next theorem. 

Theorem III: The dominant-partition-truncated BRS 
equations (59) are obtained by distributing the residual inter­
action VfJ over the subset of all possible partitions containing 
am and proceeding as in the derivation of the BRS equations 
(Ref. 16). 

This theorem provides a satisfying degree of consisten­
cy in the reduction of the BRS equations. These consider­
ations are displayed in Fig. 1. 

Proof From (39) and (53) we have 

(60) 
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Formal Expression I 
distribution/ 
over all 
partitions ~

distribution 'over 
dominant partition 
set 

Completely Connected 
BRS Equations 

FIG. I. 

and 

Also note that 

Dominant Partition 
BRS Equations 

Partially Connected 
BRS- type Equations 

L V~, = S(j?_ 1 Vi3, (3::>a m • 

d,{'~a",) 

Using (56) we obtain 

We use this in the definition of the transition operator2 

TfJ~' = VfJGG a- 1 • 

We obtain 
m-I 

TfJ: = L L C)V~,Gd,G;1 
) = 2 d,{:::>a",) 

m - 1 

+ L L C) V~,Gd,Tdr, (3::>a m • 
j ~ 2 d,{:::>a",) 

(61) 

(62) 

(63) 

(64) 

(65) 

Using the Lippmann identityl6.18 to transform the Born term 
gives the following equation for a new set of operators T(3a 
which are equal to Tf3: on the half-shell 

m-I 

Ti3
a = L L ~ V~/5dJa 

j = 2 d/:::>a m ) 

m --1 

+ L L C) V~ Gdj Tdp, (3::>a m • (66) 
)=2 d/:::>a m ) 

This yields 

(67) 

We use the Yakubovskii cluster expansion l9 to decompose 
the transition operator internal to partition d) into pieces of 
different connectivities. We write 

(68) 

and 
m -- 1 

Ti3+0d,Go = V~,Gd, = L L K~,~Go. (69) 
n ~- j (d,:::»d" 

The anticluster truncation procedure is to replace K ~,~G() by 
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Kdd" for n > m and to drop all other terms. We then get 
m-l m-l 

T{3a = v~ + I I c; I I Kdd. TdP . (70) 
j ~ 2 di~am) n =j (dj~)d. 

We interchange the nand j sums realizing that m is the 
largest number of clusters that we can have in the limited 
space. We obtain 

T(3a = v~ + mf I I K';id" i I Cj vd)GG a- I , (71) 
n ~ 2 d,,(~a ... ) j = 2 d/~d.) 

where (64) has been used. Employing 
Lemma 4: 16 

yields 

and 

V. SUMMARY AND CONCLUSIONS 

(72) 

(73) 

Q.E.D. 

(74) 

We have developed a generalization of the Hahn and 
Watson's' "partially connected" strategy appropriate for 
constructing n-cluster models for N-body problems where it 
is intended that n.(N. The cases treated are those in which 
the only channels treated explicitly are obtained by combin­
ing the clusters of an n-cluster "dominant" partition, an' We 
obtain n-body equations of the BRS type for transition oper­
ators and of the LRT type for wave functions. The resulting 
equations are connected in the degrees of freedom corre­
sponding to the relative motion of the clusters of an' but not 
in those internal to a single cluster of an' Following Hahn 
and Watson we assume that these degrees of freedom are to 
be handled in some manner different from operator integral 
equations (e.g., by statistical or phenomenological 
methods). 

Our main result is that the BRS and LRT equations for 
the small number of clusters is in fact exact if the subsystem 
Green functions are put in from some other source. This 
means that no incoming waves associated with channels 
breaking the cluster of an are to be admitted. Furthermore, 
one can obtain the partially connected equations by either 
truncating the anticluster expansion for the kernel or by dis­
tributing the residual potential only over the appropriate, 
limited set of partitions. The same equations are obtained by 
both procedures. 

A specific example where a procedure such as described 
here may be relevant is in the six-nucleon problem where the 
initial channel is a low energy (E < 20 MeV) deuteron inci-
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dent on a 4He nucleus. As is well known 20, this is well de­
scribed as a three-body problem. Here, our dominant parti­
tion would be a3 = (n) (p) (nnpp) where the effects of 
exchange are ignored. The three-body equation would fall 
out immediately upon approximating the Green function 
Ga , by its part having the 4He pole. This approximation 
would yield real effective nucleon-4He interactions. 

More general results, including the appearance of com­
plete effective interactions, can be obtained in a number of 
ways, the simplest of which is the introduction of projection 
operators at the Green function G a,' The part corresponding 
to everything but the 4He pole is then solved formally a la 
Feshback. 21 This leads to the appearance of generalized opti­
cal potentials as effective interactions plus the well-known 22 

effective three-body force. 

IE.O. Alt, P. Grassberger, and W. Sand has, Nuc!. Phys. B2, 167 (1967); 
JINR Report No. 4-6688 (1972); W. Sandhas, in Few-Body Dynamics, A. 
Mitra, I. Siaus, V. Bhasin, and V. Gupta, Eds. (North-Holland, New 
York, 1976), pp. 540-57. 

2G. Bencze, Nuc!. Phys. A 210,568 (1973); E.F. Redish, Nucl. Phys. A 
225, 16 (1974); I.H. Sloan, Phys. Rev. C 6, 1945 (1972). 

30.1. Kouri and F.S. Levin, Nucl. Phys. A 253, 395 (1975); W. Tobocman, 
Phys. Rev. C 9,2466 (1974). 

4L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961). 
'E.F. Redish, in Modern Three Hadron Physics, A.W. Thomas, Ed. 
(Springer, New York, 1977), pp. 181-239. 

6S.R. Cotanch and C.M. Vincent, Phys. Rev. C 14,1739 (1976). 
'Y. Hahn and K.M. Watson, Phys. Rev. A 5,1718 (1972). 
SM. L'Huillier, E.F. Redish, and P.e. Tandy, Bull. Am. Phys. Soc. 21, 49 
(1976); "The Structure of the Scattering Wave Function in the N-body 
Problem," Int. Symp. on Nuclear Reaction Models, Balatonftired, Hun­
gary, June 27-July 1, 1977; J. Math. Phys. 19, 1276 (1978). 

9M. Goldberger and K.M. Watson, Collision Theory (Wiley, New York, 
1964). 

lOR. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, 
New York, 1966). 

liS. Weinberg, Phys. Rev. 133, B232 (1964). 
IlV. Vanzani, in Few-Body Nuclear Physics (I.A.E.A., Vienna, 1978), p. 57. 
I3E.F. Redish, Nuc!. Phys. A 235,82 (1974). 
14W. GIOckle, Nucl. Phys. 141,620 (1970). 
I'K.L. Kowalski, Phys. Rev. C16, 7 (1977). 
16p. Benoist-Gueutal, M. L'Huillier, E.F. Redish, and P.e. Tandy, Phys. 

Rev. C 17, 1924 (1978). 
17 Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun, 

Eds. (National Bureau of Standards, 1964), p. 825. 
ISB.A. Lippmann, Phys. Rev. 102,264 (1956). 
190.A. Yakubovskii, Sov. J. Nuc!. Phys. (U.S.A.) 5, 937 (1967). 
20G. Plattner, in Few-Body Systems and Nuclear Forces II, Proc. VIII Int. 

Conf., Graz, Austria, Aug. 24-30,1978, H. Zingle, M. Haftel, and H. 
Zankel, Eds. (Springer-Verlag, Berlin, 1978), p. 376. 

21H. Feshbach, Ann. Phys. (N.Y.) 5,357 (1958); 19, 287 (1962); Gy. 
Bencze, "Effective Three-Body Problems in Nuclear Reactions," U. of 
Helsinki preprint no. 2-73 (1973), unpublished. 

22N. Austern and K.C. Richards, Ann. Phys. (N.Y.) 49,309 (1968). 

Robert M. Dixon and Edward F. Redish 377 



                                                                                                                                    

Initial value problem for two oscillators interacting with 
electromagnetic field 

K. RZCJi:ewski 
Institute of Theoretical Physics, University of Warsaw, 00- 681 Warsaw, Hoza 69, Poland 

W. Zakowicz 

Institute of Physics of Polish Academy of Sciences, 02-668 Warsaw, AI.Lotnikow 32, Poland 
(Received 29 September 1978) 

We solve exactly equations of motion for two charged harmonic oscillators interacting 
with electromagnetic field. Detailed analyses of the system's behavior for small times is 
presented. We go beyond the one pole approximation. A simple model for the so-called 
soft mode instability is given. The scattering cross section is derived from time 
dependent solutions. 

I. INTRODUCTION 

The interaction of two atoms with radiation has been 
studied for many years. 1-8 This is the simplest system for 
which cooperative behavior can be studied and due to its 
simplicity a dynamical description can be given. 

The long time behavior has been studied in the frame of 
the so-called single pole approximation. Stephen I was prob­
ably the first two found the correct distance dependent ex­
pressions for the width and shifts of the emission line. To 
some extent the expression has been qualitatively verified in 
the experiments of Drexhage et ai.,9 on the scattering oflight 
by the atom placed in front of the mirror. 

The interesting problem was the demonstration of caus­
al behavior of the system due to the finite velocity of light 
propagation. If one of the atoms is excited in the initial mo­
ment, one expects proper delay before the other one will be 
excited. Milloni and Knight6 have shown how this step type 
behavior matches the long time description given by single 
pole methods. 

The purpose of this paper is to discuss the problem of 
two sources by means of two harmonic oscillators interact­
ing with electromagnetic field. This problem can be exactly 
solved in the frame of the dipole approximation with a cutoff 
removing the corresponding divergence for high photon fre­
quencies w~ 00 • 

A similar problem of two harmonic oscillators but in­
teracting with the scalar field has been recently discussed by 
Aichelburg and Grosse.7

•
8 They were able to renormalize 

their model and to remove the cutoff parameter from 
solution. 

In our model the cutoff frequency f1 remains in the 
solution via the single oscillator life time and frequency shift. 
In the limit f1~ 00 the single oscillator life time remains 
finite while the frequency shift is linearly divergent. One 
could remove this divergence by a similar renormalization 
procedure as in Refs. 7, 8, but the resulting oscillator dyna­
mics contains so-called "run away" solutions which do not 
have any physical meaning. 

Two different methods can be used to express solutions. 
One is convenient for short time behavior and study of retar­
dation properties, the other for long time evolution. 

We go also beyond the single pole approximation. We 
find all subsidiary poles of the resolvent functions in the 
problem and point out their role played for short time behav­
ior, especially discussing their contribution in matching the 
initial data. 

The model predicts instability for very short distance 
between sources. This instability is entirely due to the elec­
trostatic dipole-dipole interaction. An instability of this 
kind is responsible for the spontaneous generation of the 
static dipole moment in the system of two-level atoms, phe­
nomenon recently discussed by several authors. 10. I I 

The paper contains a section containing a derivation 
and discussion of the scattering cross section of radiation on 
two sources. The problem was investigated by Lyuboshits2 
in a quite different framework. 

II. MODEL AND ITS SOLUTION 

We consider a system composed of two harmonic oscil­
lators located at fixed points 1\ and '2. Each oscillator is 
composed of two opposite charges e, - e, with Coulomb 
interaction represented by the elastic force. One of these 
charges is spread out uniformly in a sphere and has infinite 
mass. We look for the motion of the second one (electron) 
having the mass m and moving inside this sphere. 

The Hamiltonian of the system, written in the Coulomb 
gauge, is 
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+ _1_ J d3 r[E}(r) + ff2(r)], 
81T 

(2.1) 

where x I' X 2 denote displacements of electrons from their 
equilibri um positions r I and r 2 , P I and P2 are cannonical 
moments,rl2 = Ir, -r21,andn=r12 lr,2 · 

For the vector potential A (r) we have the following 
plane wave decomposition: 

(fzc)'!2 2 J --A (r) = -2-- 2: d3 k efl-' k - 1/2(afl-' eik., + ak; e - ik.'), 
1T I-' = I 

(2.2) 
where ak:, and afl-' are creation an~ annihilation operators 
for photons with the wave vector k and linear polarization 
efl-' normalized according to the following commutation 
relations: 

[afl-',a(,I-"] = 01-'1-" 03(k - k'), 

[afl-',af'I-"] = 0 = [a~,a(,I-"]. 
The model we will consider corresponds to the Hamiltonian 
(2.1) taken in the dipole approximation. In the dipole ap­
proximation we replace A(F; + Xi) by A (F;). Making such a 
replacement, however, we are losing a tempering oscillatory 

factor e;k,xi and the model becomes divergent at high photon 
frequencies. To stimulate the converging effect of eif.x and to 
make our dipole approximation finite, we introduce in the 
coupling terms the form factor which cut off high frequency 
photons. 

With these approximations our model is defined by the 
following Hamiltonian: 

H = _1_ ± (pi - :. Ag (r;)) 
2 

+ !mliJ~ ± x~ 
2m i= I C i= I 

+ ~ [XI ,x2 -3( XI 'ii)(x2 .ii)] + _1_ J d3 r 
~2 81T 

X [E}(r) +ff2(r)], (2.3) 

where Ag (r) corresponds to Eq. (2.2) with k -112 being re­
placed by the form factor g(k). We take the form factor in the 
form 

g(k) = 
k 1/2 (f} 2 + k 2C2) 112 

(2.4) 

with the cutoff frequency f} being of the order of 21Tcl d, 
where d is the radius of oscillator. 

Weare going to solve the Heisenberg equations of mo­
tion for the dynamical variables of the system. Instead of the 
canonical moments Pi appearing in the Hamiltonian (2.1) we 
will use velocites (kinetic momenta). This choice is dictated 
by causality requirements as was discussed by us in Ref. 12. 

The equations of motion for charges are 

(2.5a) 

(2.5b) 

plus the similar equation for the second oscillator (1+-*2). 
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The field equations are (liJ = I k I·c) 
dafl' . . e (k)-

= - lwaf" + 1 g ef" 
dt ~ 21T(fzc)l!2 ~ 

~ - -ik;: . ~ vi·e ' (2.6) 
i= 1 

plus conjugate equation for a~. 
To solve the set of equations (2.5), (2.6), we will use the 

Laplace transform method.!(z) = Sodt e - z'/(t). Using 
transformed Eq. (2.6), 

- af,,(O). e g(k) 
afl-'(z) = -z-+~-l'F-.,+l --~--e-

W' 21T(fzc)l12 z + iw kl-' 

~ - if·,- ( ) 
.~e }VjZ, (2.7) 
j= I 

one can eliminate dynamical field variables from the equa­
tion of motion of oscillators, getting the following set of 
equations: 

JY(Z)/jl (z) + ~ e - Z7,,IC[(/ - n ® ii) ~ 
mc2 r l2 

+ (/ -3 n®ii)(~ + 
~2 

= XI = - w~x\ (0) + ZV\ (0) 
2 A 

- _e _ (1 -3 n ® ii),x2 (0) 
m~2 

. (fzc)1I2 ~ J d 3kk 112 - (afjl (0) if." + lze --- ~ efl-' --.- e 
21Tm I-' z + lliJ 

a~ (0) _ if.,,) - ---e 
z - iw 

(2.8) 

plus the second equation for v2 (z). Here the function JY(z) 
defines resolvent function for single oscillator. 12 It is given 
by 

JY(z) = w~ + ZZ(1 + ~ ('" dk k 3g2(k) ), 
31Tmc Jo Z2 + 0/ 

(2.9) 

and with our form factor (2.4) for that branch of H which is 
relevent for the future evolution we get 

JY(z)=wo +z 1 + ----- . 2 2( 2 e
2 

f} 2 ) 
3 mc3 z + f} 

(2.10) 

We point out that the function JY(z) defined by (2.9) is a 
multivalued function of z. With the form factor (2.4) it is 
double-valued. In passing to (2.10) we have chosen that 
branch which has no zeros for Rez > O. The same Riemanian 
sheet was used when evaluating the contribution to the mo­
tion of one oscillator coming from the second one. This term 
appears with the factor exp( - zrl2 Ic) responsible for retar­
dation effects in the interaction of both oscillators via elec­
tromagnetic field. 

Notice that, although the dynamical variables of the 
field has been eliminated from the equations of motion, the 
initial data for the field are still necessary. This means that 
we are still dealing with the coupled problem for the motion 
of charges and field. A similar system of equations for N 
oscillators occupying a small spherical volume was analyzed 
in Ref. 17. 

The components of velocities parallel to the vector n, 
vlI,i = (Vi ·ii)n and transverse to n, V1 , = nX Vi satisfy separat­
ed equations 
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cW'VII1 - UU II VI12 = Kill' 

- UUII ~II + cW'~12 = K112' 
and 

cW'Vll + UU 1 Vn = Kll , 

UU I Vll + cW'Vn = Kl2 , 

where 

UU II = 2ye - zp( ~ + ~), 
pZ p3 

UU 1 = ye - zp( Z2 + ~ + ~) 
P p2 p3 

with Y = e2/me3 andp = r12 /e. 

These equations separate further into symmetric Vs 

(2. 11 a) 

(2. 11 b) 

(2.11c) 

(2. 11 d) 

(2. 12a) 

(2.12b) 

= VI + Vz and antisymmetric vibrations Va = VI - v2 • The 
solution of Eqs. (2.11) reads 

1 
vIIs = Klls ' vila = Klla , 

cW'-UU II cW'+UU II 

~a = ----KIa. 
cW'-UU 1 

(2.13) 

The functions (cW' ± UU II ) -I and (cW' ± UU I) -I we will call 
resolvent functions of the two oscillator problem. 

Using the solution (2.13), we get for the velocity of the 
first electron 

VI (Z) = a(z)ii(ii.KI) + /3 (z)KI + y(z)ii(ii.Kz ) + {j(Z)K2' 
(2.14) 

where 

a(z) = 
cW' 

cW'2 - UU~ 
(2. 15a) 

/3 (z) = 
cW' 

cW'2 - UU~ 
(2. 15b) 

y(z) = 
UUII 

+ 
cW'Z - UUfl 

(2.15c) 

{j(z) = 
UU l 

cW'2 - UU~ 
(2.15d) 

Before we discuss the time dependence of these solu­
tions, we find the emitted electromagnetic field. We get the 
solution for the creation and annihilation operators akt (z) 
and akjt(z) substituting (2.14) into (2.7). Using these opera­
tors, one can perform the reconstruction of electromagnetic 
field in space. Our procedure and discussion is similar to the 
one in Ref. 12. 

For the transverse part of the electric field 

E= (- ) - . (1ic)112 "J d 3k k 112-_ T r,z -l---~ ekjt 
21T jt 

X (akjt(z)e;f.f - a!,;(z)e- f .f ) (2.16) 

we get after k integration and polarization summation 

ET(r,z) 

=EfreeCr,z)-e ± {e-zlf-fd/c[(i_ii;®ii) _ z_ 2 

;= 1 Ir- rd e 
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+ - n ®n· + (fA 3 - -)( 1 1)] 
, , I r - rd 2e z I r - r; 13 

1 (i -3 ii; ® iiJ} 'V; (z) (2.17) 
zlr-r;13 

here ii; = (r - r;)1 1 r - r; 1 and Efree represents the freely 
evolving part of the electric field. 

The longitudinal part of the field is given by 

_ 2 A X,{z) 
EL(r,z) = - e " (f - 3ii;®ii) (2.18) ;-:-1 Ir-r;13 
Adding both parts, we get 
_ _ 2 A X,{O) 
E(r,z) =Efree(r,z)-eI(f-3iii®ii;) _ -3 

i=1 zlr-rd 

The first term of the right-hand side represents the static 
dipole field initially present due to the initial value of the 
dipole moments. The second term gives the contribution to 
the field due to the motion of charges. Due to the factor 
exp( - zlr - r; lie) the field at the point;;is properly retard­
ed. Notice, that this was not the case either for the transverse 
electric field or for the longitudinal one. 

The dependence of Vi on Kj and therefore on the initial 
data [the initial state of oscillators X; (0) and V; (0) and of the 
field afjt (0) and a!,; (0), [Eq. (2.8)] leads to natural decompo­
sition of the emitted field into spontaneous radiation and 
scattered radiation. Because of analytical properties of the 
resolvent functions, the initial state of oscillators cannot con­
tribute to the spontaneous radiation at the point rbefore time 
et = min( 17 - r l 1,17 - 72 1). For times 

min( 17- r l I, 17 - r2 I) de < max( 17 - r l I, 17 - 72 I) 
only one oscillator contributes. For later times both oscilla­
tor contribute, and the radiation is influenced by the interfer­
ence effect. 

To demonstrate causal properties of the scattered radi­
ation, it is more convenient to express the initial data for field 
by the initial field distributions in space, i.e., ET (7,0) and 
jj (7,0) instead of afjt (0) and a!,; (0). 

That part of K; which depends on the initial data for the 
field may be written as 

K j = ize (1ic)1/2 If d 3k k 1/2 
21Tm jt 

_ (af jt (0) ;k.f, a!,; (0) _ 'f'f,) ·e- ---e - ---e 
kjt z + iw z - iw 

= _e_ d 3r' _e __ ---,-_ J 
-zl,;- f'(le 

41Tme lif - 7' I 
X ( :2 ET (7',0) + z curlB (7',0») 

where we have used the equation 
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(2.21) 

plus the conjugate equation for ~f.tekf.t at,.. Again, the scat­
tered field at the point ris influenced by the initial field at the 
point r' only for times t for which the electromagnetic signal 
can travel from r' to rvia at least one oscillator. 

It is worth adding at this point a remark about an alter­
native approach to the electric dipole interaction which is 
usually refered to as the J.E Hamiltonian. 13,14.15 One can 
write down an alternative Hamiltonian to (2.1) in the form 

H I (0::2 0::2) 1 2 (-z -2) = - 17'1 + 17'2 + '2.mUJo Xl + X z 
2m 

+ _1_ J d 3r(E 2 + jj2) - e(xi ·E (rI ) + xz·E (r2 » 
817' 

+217' f d 3r[(Pi)2 + (PD 2
], (2.22) 

which is unitarily equivalent to (2.1) but has an advantage of 
containing no direct interaction between oscillators (explic­
itly!). In this description kinetic momenta ifl and if2 are 
canonical; they commute with photon creation and annihila­
tion operators. 

The whole difference between (2.1) and (2.22) is in the 
different definition of the radiation field. 

StUdying the Maxwell equation 

divE = 41TP, (2.23) 

we can write its general solution as a sum of the general 
solution of homogeneous equation and special solution of 
inhomogeneous equation. The latter is not unique. Conse­
quently, the notion of the radiation field and the notion of 
the photon is not unique. The p.A interaction supplemented 
by the Coulomb gauge, used throught this paper, can be 
characterized by the special solution of (2.23) which is given 
by the Poisson integral: 

(2.24) 

On the other hand, in the J.E interaction, the special 
solution of the inhomogeneous equation is given by the fol­
lowing distribution: 

_ 2 _ 

E(r) = 41Te 2: x(5(r - r;) = 41TP(f); (2.25) 
i= 1 

that is, it is proportional to the polarization. Of course, all 
physical situations described in terms of the initial distribu­
tion of electric and magnetic field may be equivalently de­
scribed either way, but the answers are ususally a little differ­
ent if the initial state is described in terms of its photon'S 
contents. In particular, photon vacua in the presence of the 
excited system are different in both descriptions. 

The vacuum of the p.A Hamiltonian analyzed in terms 
of photons entering the J.E Hamiltonian contains photons 
necessary to build the Coulomb dipole field in the whole 
space. On the other hand, the vacuum of the J·E Hamilton­
ian contains p.A type photons. Therefore, the notion of spon­
taneous emission (emission to the vacuum) is slightly differ-
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ent in both cases. It manifests itself both for very short and 
very long times. In particular, t powers of the nonexponen­
tial tail of the decay are differentY 

It is worth stressing that the scattering amplitude is the 
same in both descriptions. In the remote future and remote 
past Xi excitation amplitudes tend to zero, and Eq. (2.23) 
becomes homogeneous and no nonuniqueness arises. For­
mal proof of the above statement can be found in Ref. 14. 

III. TIME EVOLUTION OF THE SYSTEM 

To get time dependence of the solutions, we have to 
psrform the inverse Laplace transformation of ti;(z) and 
E (r,z). This inverse transformation is given by 

v(t) = ( dz. ~tff(z). 
Jr 217'1 

(3.1) 

The form of the solutions shows that the analytical proper­
ties of the resolvent functions (d¥" ± ~ II) -I and 
(d¥" ± ~ 1) -I are crucial for these inverse transformations. 
As is discussed in the Appendix, these functions are analytic 
functions of z in the right half of the z plane, Rez> 0, if 
separation of oscillators exceeds certain critical distance. 
The situation when the distance between oscillators is small­
er than the critical one will be further discussed in connec­
tion with the static phase transition in the Dicke model (Sec. 
IV). For typical situations the contour of integration r may 
be chosen parallel and to the right of the imaginary axis. 

To perform these inverse Laplace integrals, we can use 
the theorem of residues. There are two different methods for 
evaluation of these integrals. The first one uses the poles of 
the integrand functions. Beyond some imaginary poles 
which are connected with field initial data terms, the others 
are poles of the resolvent functions. 

The second approach uses the resolvent functions ex­
panded into the power series [e.g., (d¥" - ~ 11)-1 

= ~jO: I ~{I d¥" - j -I] and the inverse integrals are expressed 
in terms of single oscillator poles. The order of these poles is, 
however, increasing for higher terms in the expansion. With­
in this approach the solution explicitly demonstrates retar­
dation effects in the coupling of both oscillators. It is particu­
larly convenient for description of the short time behavior, 
for times of the order offew transit times. 

On the other hand, the first method is particularly suit­
able for long time behavior. Then, one can take into account 
only poles which are nearest to the imaginary axis. In fact 
each resolvent function has two, mutually conjugate poles, 
which are close to the imaginary axis. These principal poles 
can be easily found by perturbation of the free oscillator 
poles. ± iUJu , and they are known for a long time l

-6 Beyond 
these poles, the resolvent functions, which are associated 
with exponential polynomials, have an infinite number of 
poles. 16 All these poles are much further to the left from the 
imaginary axis; therefore their contribution is important 
only at the initial stage of the system's evolution. 

We start from the first approach. The principal roots of 
the equations d¥" ± &2-' II = 0 and Jf'? ± &2-' 1 = 0 may be 
found using the small value of the coupling parameter rand 
the expansion 
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(3.2) 

As the first term;o we choose the principal root of the single 
oscillator function H. It is assymptotically given by 

._ fwo 1 yw~ ;0 =Iw-r~ - - + .... 
(1 + ~yn )112 3 (1 + ~yn)2 

(3.3) 

In the neighborhood of;o it is convenient to represent the 
function JY' in the form 

JY' =A (z - ;o)(z - ;~), (3.4) 

Z-;3 2 n 2 

where A = ---~l + -y---
Z +n 3 n + fwo 

(3.5) 

[;3 ~ - n (1 + ~yn )is the third root of JY'.] For JY' + ~ II 
we get 

I'll _ + 1 _ (;,.p(;o 1 ) 
~ 1(;]- - iwA e p2 + p3 ' 

;11(,] = ~e-2{;'.p(;0 + -.!..) 
2 a 2ii)3 p2 p3 

X [ 2W;0 _ i (;0 + -.!.. )], 
P p2 p3 

and for zeros of JY' ± ~ 1 

1'1[.] = + _1_' e-r;,.p( ;~ + 
~I; - 2WA p ;~ + ~), 

p p 

(3.6a) 

(3.6b) 

Obviously the complex conjugate values are also roots of 
these equations. 

The imaginary and real parts of these roots describe the 
frequency of oscillations and decay constants for different 
cooperative modes ofthe system. Their dependence on the 
separation of oscillators was discussed, e.g., in Ref. 5. 

Applying these principal poles, one can find approxi­
mate solutions for the motion of oscillators and radiation 
field. For the moment we will consider those parts of Eq. 
(2.13) which depend on the initial state of oscillators only. 
The contribution of the initial excitation of the electromag­
netic field will be discussed in the next section, where we deal 
with the scattering. 

The assymptotic motion for all four modes of the sys­
tem is given by (1/ = wop) 

v ISj(t)~ lSj(O)(wo + 2y ) 
II a II a p3wo 

X Re{i/ii[ l-!yn+~iywo ±ywoe-i'l 

X(-.!..+ ~- -.!..)]} +v (0) 
1/3 1/2 1/ II (; I 
{ 

{; 1'1' ( - i'l )} X Re e a 1 - ~yn + iywo + ywo ~ 
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(3.7a) 

The amplitudes of oscillations, given by the residua of 
(JY' + ~ 11,1) -I and z(JY' + ~ 11,1) -I include first order 
term in y while the second order terms are taken into ac­
count in the oscillation frequency. 

Velocities of charges (and hence positions) exhibit 
damped oscillations. Each normal component has its own 
life time and frequency. Therefore, the spectrum of radiation 
may be quite complicated. In the general case it is composed 
of four peaks (they may overlap) of different widths and 
hights. 

For a small system r l2 .(A or 1/.(21T' the decay constants 
are equal to 

r = ~ w2(1 _ ~ 2) r - ~ w2(1 _ ~ 2) lis 3 r 0 201/, Is - 3 r 0 10 1/ , 
(3.8) 

r 1 22 r I 22 
Iia = -ywo1/ , la = -ywo1/ . 

30 15 

The decay times for symmetric excitations are almost two 
times shorter than for a single isolated oscillator. That is 
caused by a cooperative emission. On the other hand, the 
antisymmetric vibrations have very long life time. Their de­
cay is due to the higher multipole radiation, which is very 
weak. 

The frequency shifts of different modes of the system 
measured with respect to the single oscillator frequency W, 
are equal to: 

~ 

40 
x 

" >< 

x 
20 
~ -. x \ -2'10 

x " -t // ~ " 
"" ~ 

~ 

-30 ~ -10 Re ~ 
~ 

)( 

FIG. \. Position of poles for the resolvent function of the longitudinal sym­
metric mode. 

K. Rzazewski and W. Zakowicz 382 



                                                                                                                                    

TABLE!. 

Position tenn 

ReRes--
I
-­

~ - UU II 

Velocity term 

Re Res z 
~_uul' 

2 

Principal pair of 
poles 1.2068 X 10'8 1- 667.2x 10-8 

First pair of subsi­
diary poles 446 007.3846 X 10-8 - 9.72X 10-1 

3 Sum of N pairs of 
subsidiary poles 
N= 10 444 522.1 X 10-8 - 0.376 

3' 
4 

N= 5000 
N= 40000 
asymptotic expressions 

1 011.9534X 10-' 
125.4436X 10-' 

- 126.6514X 10-' 

-! + 29112.8X 10-' 
- ! + 4486.4 X 10-' 

- 3820.0X 10-' 

1 +3'+4 - 0.0008 X 10-8 ! - 0.8X 10-' 

(3.9) 

YaJ6 ( 1 1 3) 
LlaJ1 !:1 = ± -2- 113 - 2; + 8'11 . 

The shifts of the symmetric parallel and transverse modes 
are of opposite sign. For the transverse symmetric mode the 
dipole Coulomb field of one oscillator increases the force 
acting on the second one, unlike the case for the parallel 
mode when this force is decreased. 

It is evident that the solution based on principal poles is 
not valid for short times. Then, one has to take into account 
also contributions from all subsidiary poles. Similarly to the 
exponential polynomials, the resolvent functions have infi­
nite number of poles (Fig. 1). We illustrate their role showing 
their contribution to match initial data. Without the subsid­
iary poles, the formulas (3.7) taken at t = 0 are in a disagree­
ment with the initial data. Although the disagreements are 
small, they are of the same order as the relevent physical 
quantities like the frequency shifts and decay constants, and 
it is worthwhile to comment about possible improvements. 

Let us consider, as an example, the parallel symmetric 
mode connected with function ,;y - '11

11
, The initial data 

conditions require that 

lim (g(t) = i _d_z __ ~_' - ) = 0, 
1--0 • r 211'i ,;y - '11

11 
(3.10) 

) = 1. I· (f() - i dz Z~' 1m t - -
1--0 • r 211'i .Jr - '11

11 

Using standard method,16 one can find the values of the as­
ymptotic poles of the resolvent function valid for large inte­
ger k 

1 (11'Pk 1).[ 11' - In-- - - -l ~2k-!) 
P Y 4k P 

+ In(11'kp/y) + 1 ] + 0 (k - 2) 
211'pk 

(3.11) 

For small k this formula is not valid, but may be used as a 
starting point for a numerical search of poles. 

Fitting the initial data requires high accuracy and com-
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puter analysis. The computer gives the position of principle 
and subsidiary poles, calculated residua of the integrand 
functions, and sums them. The high accuracy is required 
because of a slow convergence of the series. The computer 
summed up contributions from 40 000 poles. The remaining 
terms were taken into account analytically using asymptotic 
formulas. Table I illustrates the procedure and final result. 
We have assumedpwo = I, yWo = 10 -8, n /aJo = 103

• The 
improvement of the position term is evident. Notice that the 
first subsidiary poles give correction which exceeds the ini­
tial discrepency by five orders of magnitude. A slow conver­
gence of the series of residua results in the fact that with 
40000 of them the deviation is still two orders of magnitude 
worse than the initial error. Then, however, we can use the 
asymptotic formula, matching finally the initial data three 
orders of magnitude better than the principal poles contribu­
tion did. 

The properties of the velocity term are not so evident. 
The initial discrepancy from 1 seems to be equal to 
7 X 10 - 6. Adding all contributions, we get the value very 
close to!, namely! - 0.8 X 10 -- 8. This is because, sum­
ming all residua, we getf(O) notflO +), which fits the initial 
data. As the functionf(t) is discontinuous and, as 
f(t < 0) = 0, we haveflO +) = 2f(0) and with the help of re­
sidua we getf(O +) = 1 - 1.6 X 10 - 8, which is quite good 
even in comparison with the erroneous treatment of the 
"principal poles" values. It remains, however, a puzzle as to 
why the value obtained with principal poles only is so clase to 
1 which might suggest that the assymptotic function is also 
good for short times. 

The above test shows how crucial all subsidiary poles 
are for short time behavior. The subsidiary poles are separat­
ed from the imaginary axis by a distance O'z(lIp)ln(11'p/y). 
Therefore, their contribution dies in time with the decay 
time Ts = 0' -- 1, which is a fraction of the transit time for a 
light passing between oscillators. This does not mean that 
the asymptotic solutions based on the principal poles are 
valid for such short times. Large values of residua at the 
principal poles results in the fact that their contribution sur­
vives for many decay times Ts' The second method, which 
will be discussed now, shows that the asymptotic solutions 
given by Eqs. (3.7) are valid after several transit times. 
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The above discussion shows that it is not very conve­
nient to describe a short time behavior using the first meth­
od. In that case the second, based on the single oscillator 
poles, is much more convenient. It is illustrated again for the 
~Ismode. 

The resolvent function entering the integrands can be 
expanded as follows: 

I __ ~_~IT . 
~ (3.12) 

JY - ~ II n ~~ 0 JYn + 1 

Applying this expansion, we can write 

v t - = f dz 2 n ~(t-np)(z/p2 +11 p3) 
Ils()- I -2 .(y) [JY()r+1 

n=O m Z 

X [ - (OJ~ - ;~ )XlIs(O) + ZVlIs(O)] 

+ field contribution 

= - (OJ~ - ;~ )XlIs(O)g(t) + J(t )vs(O) 

+ field contribution (3.13) 

In spite of the fact that the upper limit of the sum is infinite, 
for finite times there are only a finite number of terms, name­
ly N = int(t /p), which contribute to the sum. Indeed, for 
n > N the contour r can be shifted to the right to + 00 and 
all integrals vanish. 

The poles which determine the values of relevant terms 
coincide with the poles of one oscillator resolvent function 
JY -I. The order of these poles in subsequent terms grows. 
It is therefore difficult to use this method for exact treatment 
of the long time behavior. On the other hand, one has no 
difficulties for short times. For example, it is very easy to 
check the initial data condition. Then, there is only one term 
relevant (with n = 0), and because the point at infinity has 
no essential singularity, the value of V(O +) is given by the 
limit 

vlIs(O +) = lim zVlliz) = vlls(O). (3.14) 
z-~co 

Before the light signal passes the distance between oscilla­
tors, the motion of each oscillator is not modified by the 
presence of the second one. At t = P we have to add a new 
term to v(t). It expresses the mutual influence of oscillators 
on their evolution, which is due to radiation emitted by one 
oscillator and absorbed by the second oscillator. The third 
term, which we must include for r;;.2p, includes also the radi­
ation emitted by one oscillator scattered by the second one 
and reabsorbed by the first one. This effect interferes with 
another one caused by spontaneous radiation emitted at time 
p < t < 2p by the second oscillator. As time grows, the num­
ber of possible processes dramatically increases. 

For long time behavior not all the processes are of equal 
importance. Due to the small value of the coupling param­
eter (yOJo ::::: 10-8 for atomic parameters) the subsequent 
terms give smaller contributions. For large t, one can sum 
the leading terms finding a proper asymptotic behavior 
found within the first method. The procedure below, extends 
the method presented in Ref. 6. 

Substituting in (3.13) the approximate expression (3.4) 
for JY and calculating the residua, we get (we skip indices 
II,s) 
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int~pl 1 ( 2y)n 1 d n 
g(t)=2Re ~ - - --

n =0 A A n! dt" 
X ~(t - npl(z/ p2 + 11 p3)" I 

(z _ r*)n + I 
:, 0 Z=;(l 

/;,,1 int~pl an 
~Re-:=:- ~ -, [t n + t n

-
l (an 2 + bn) + ... J, 

IOJA n=O n. 

a = ~ e - ~"p( ;0 + ~) = yf-
jwA p2 p3 ~I' 

a = _ ;0 I b = 
p(;oIp2 + lIp3) 2iw' 2iw 

(3.15) 

For times which are of the order of the decay time and which 
are of a physical interest, only a certain number of initial 
terms, much less than N = int(t /p), determine the value of 
the functiong(t). As the remaining terms are very small, we 
will make a very small error extending the summation to 
infinity. Then we get 

e(~,,+Y~/lt [ 
g(t) = Re. 1 - :"yfl + ~iOJoY 

IOJo 3 3 

+ ywe - 11) - + - - - + r ;2t , . ( I i I) _2 ] 

1/3 1/2 1/ 
(3.16) 

This expression is in agreement with formulas (3.7a) found 
using principal poles. Only the second order correction to 
the position of the pole, r;2, appears here as the time depen­
dent amplitude correction. 

In the same way one can find the agreement for the 
velocity factorJ(t). Milloni and Knight6 kept only t" terms, 
getting the proper first order correction to frequency shift 
and life time but not the amplitude. 

IV. INSTABILITY REGION 

Up to now we have considered normal situations when 
the separation of oscillators exceeds a certain critical dis­
tance and the resolvent functions have no poles in the right 
half-plane of complex z plane. If the separation is smaller, 
there are poles to the right from the imaginary axis, which 
means instability in the model. Similar instability was also 
found in the scalar field model in Ref. 8. 

Consider the function JY(z) - ~ II (z), which describes 
the symetric vibration of longitudinal mode. This function 
has one real and positive zero, if 

OJ~ <2e2/m,-J. (4.1) 

Indeed, then JY(O) - ~ II (0) < 0 but limH + 00 [JY(z) 
- ~ II (z)] = + 00. Due to this zero and instability, the total 

dipole moment of oscillators is exponentially growing in 
time. 

This instability is exactly the same as the recently dis­
cussed 10.11 appearance of the macroscopic polarization in 
the system of two-level atoms interacting with the electro­
magnetic field, with Coulomb dipole-dipole interaction tak­
en into account. This polarization develops if the density of 
two-level atoms exceeds a certain critical value. A similar 
instability occurs also in a spherical system of many 
oscillators. 17 

One can easily understand that linear character of oscil-
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lators produces unbounded effects once a distance between 
osciIIators is smaller than the critical one. 

Since the "catastrophe" we are discussing now is at zero 
frequency (for real z), it can be easily understood from purely 
electrostatic considerations. 

Two oscillators interacting through dipole-dipole force 
obey the following Newton equations: 

= 2 - 2 j -3 n ® n - (42) mx,,2 = - mWOx,,2 - e ,-3 x2,,' . 

For the longitudinal mode xlls = n[ n·(.i, + x2 )] we get 

mxlIs = (2~/r - mw~)ills' (4.3) 

from which we get immediately the instability condition 
(4.1). 

There are two remarks to be added: 
(i) One can easily get instability with finite displace­

ment of both oscillators (spontaneous generation of finite 
total dipole moment) by taking into account Coulomb inter­
action between different charges constituting oscillators ex­
actly and not in dipole-dipole form, 

(ii) If elastic force binding osciIIators is of electrostatic 
origin, Wo is not a free parameter, but w~ = e21 md 3. There­
fore, the instability condition requires such two extended 
atoms to overlap. In this case none of this results really 
holds. For this reason there is probably also very little phys­
ics in the static phase transition for two-level atoms. The 
density required would cause electronic shells of atoms to 
overlap. 

V. SCATTERING PROBLEM 

The scattering problem was considered by Lyuboshitz,2 

who applied equations describing the scattering by many 
centers, Now, we shall present the derivation of the scatter­
ing cross section starting from our general solution of the 
initial value problem, In this solution, we have distinguished 
terms which describe the scattering of electromagnetic radi­
ation. These terms contain initial field operators Q- (0) and 

+ . - - - - PI' 
apl' (0) [or eqUivalently E~r,O) and B (r,O)]. This scattered 

o 

part of the photon creation operator a~ (z) is given by 

e
2 

z J Q~ SC(z) = _ __ I d 3p pll2 
4n2m (z - iw)w 112 v 

X ( ap~ ~O) Fl'v(k,p;z) + apv(?) F:v<f,p;z»), 
Z-IWp Z+IWp 

where 

Fl'v(k,p;z) = (/(k - w, + ei(k - W1)[ a(z)(epv'n)(e;q.'n) 

+P(z)(epJK/L)] + (ei(kr,-Jif1) + /(kr1- JifI ) 

X (epv·n)(ekl'·n) + 8(z)(epv·ekl')] 

and the functions a(z), P (z), r(z), and 8(z) are given by Eqs. 
(2.15). 

We have previously used this expression for reconstruc­
tion of the scattered field in space and in the discussion of its 
causal properties. However, in a typical scattering experi­
ment such a detailed information about the scattered field is 
not controlled. What is usually measured is a scattering 
cross section. 

To extract the scattering cross section, we have to speci­
fy the initial data for the field to be a monochromatic plane 
wave. Assuming that the field is in a coherent state, it is 
enough to know mean values for the field strengths: 

(Er(r,t = 0» = €o~ 0 sin(p·r), 

(B(r,t = 0» = (ftX€o)~ 0 sin(p.r). 

(S.la) 

(S.lb) 

Using relation (2.21), we find that the expectation values for 
oqiO) and aq't (0) are 

(5.2) 

With the help of these expressions we can compute expecta-
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FIG. 2. Differential cross section as a function offrequency, .:Iw = (J) - wo(1 - frO) for different separation of oscillators. The scattering parameters are 

n = (1/2"2)(1,1,0), k i = (0,1,0), kf = (1/2'/2)(0,1,1), ei = e
f

= (1,0,0). 
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tion values of the scattered part of the field. When doing so, 
we get terms of different type. For t--+OC! we can neglect 
terms resulting from poles of the resolvent functions 
(JY ± U21

11
) -I and (JY ± U21 1 ) -I (they are damped) and 

counter-rotating terms because of their nonresonant and 
purely oscillatory character. 

Remaining is the expression of the following type: 

( J- SC( » . e
2 

112 21T cP F (k- -. ) ak,1 t --+ + I -- W -- (!) 0 1'-0 ,q;IW 
'-00 4~m fil12 

(5.3) 

The density of the energy flux for scattered light in the direc­
tion k and polarization I-l is given by 

(5.4) 

where the normalization is such that ~f..fdwSd[J S;q.,. gives 
the total energy flux of the scattered field. The expectation 
value of the operator Sfl'-(W,t) can be calculated with the help 
of the mean values (a0,(t» and (ak:sC(t». The other terms 
are negligible when t--+OC!. 

The differential cross section is defined by the limit 

dUI'-(k) . (Skl'-(W,t» 
= hm (5.5) 

d[J ,~oo tlSI ' 

where IS I = (C/21T)'l/6 is the mean density of the energy 
flux for the initial field. The time t appearing in the denomi­
nator gives the density of energy flux of scattered light per 
unit time. 

The linear growth of the numerator is recovered from 
the familiar formula 

lim I [I - cos(w - wp)t ]/(w - wp)2J--+1Tt8(w - wp)' (5.6) 
t~oo 

The presence of the function 8(w - wp ) means that we have 
only the elastic scattering. For the scattering differential 
cross section we get 

du (w) 2 4 
-1'-- = ~ IF (k-'iw)1 2 

d
n 2 4 I'-V ,p, , 
U'k me 

(5.7) 

and, writing IFI'-vl 2 explicitly, 

du (w) e2w4 
-

I'- = 2 -2- (11 + cos[r12.(k - ft)]lIla(iw)1 2A ~o 
d[J m c4 

where 

+ 1/3(iw)12B~o +2 A 1'-0 B,lO Re[a(iw)/3*(iw)]J 

+ \1 + cos [r12 .(k + ft)] HI y(iw) 12A ~o 

+ 18(iw) 12 B ~o +2 A 1'-0 B 1'-0 Re [ y(iw )8*(iw)]j 

+2( cosrl 2·p + cosrl 2 .k) RelA ~oa(iw)y*(iw) 

+ B ~o /3 (iw )8*(iw) + A 1'-0 B 1'-0 [a(iw )8*(iw) 

+ /3 (iw )y*(iw)] j) (5.8) 

Apo = (ekf.l·n)(n.Eo), B 1'0 = eff.l·Eo· 

This expression exhibits resonant and interference effects in 
the scattering. The spectrum is composed of four peaks re­
sulting from principal poles of the functions a, /3, y, and 8. 
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For separation of oscillators r 12 > A. these peaks overlap, pro­
ducing single resonance. For r«A. all peaks are separated. In 
that case, in the vicinity of all resonances we can get approxi­
mate expressions for the cross section. Near the resonance of 
the transverse symmetric mode we have 

8 = /3 = - a = - y = 1/2(JY + U2I j ), 

and for the cross section we get 

dul'- e4 4 

= 4 ~ [(ekf.l·n)(Eo·n) - (ef,"€o)f 
d[Jk m 2c3 

- 2 - 2 
X I - !(kr) - !(Pr) + ... 

(w2 _ W;1)2 + (~2wVmc3)2 
(5.9) 

For the resonance of the transverse antisymmetric mode the 
corresponding expressions are 

and 

duf.l 

d[Jk 

/3=y= -a= -8=! I , 
(JY - U1) 

X (w 2 _ W~1)2 + [-&<e2wVmc3)7J2]2 
(5.10) 

For the longitudinal mode resonances the polarization term 
is replaced by [(Eo ·n)(e kp. .n) ] 2 and in the denominator we 
have the functions 1 JY - U21

11 
12 and 1 JY + U21

11 
12 for sym­

metric and antisymmetric modes respectively. 
Notioe that at the exact resonances the magnitudes of 

the cross section for the symmetric and antisymmetric 
modes are of the same order. Only the widths of the antisym­
metric modes are much smaller than width of the symmetric 
ones, making the symmetric resonances much stronger and 
easier to detect. 

Some examples of the geometrical and spectral proper­
ties of the scattering are displayed in Figs. 2a, 2b and 3. 

We point out Fig. 3, which shows the situation when the 
back scattering exceeds 2.5 times the forward scattering. 

Summing over the final polarizations and integrating 
over directions of the scattered radiation, one can find the 
total cross section. Below, we give the value of the total cross 
section for un polarized incoming radiation when both oscil­
lators, separated by a distance r, are randomly oriented: 
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=1 
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FI G. 3. Angular dependence of the cross section. The scattering geometry is 
defined by n = k, = (0,0,1) e; = ef= (0,1,0), kf = (sinrp,O,co5q'), and 
W = wo(l - -'-yfl). 

.l 

The total cross section for different oscillator separations are 
shown in Fig. 4. 

When the separation of oscillators r_ 00 , 

a = y = {) = 0, /3 = 1/ dY', and we get 

a(w) = 1617e2w4/3m2c41 dY'(iw) 1
2

, (5.12) 

which is two times bigger than for one oscillator. 
In the opposite case, when separation of oscillators 

tends to zero, we get 

a(w) = 1617e2w4/9m2c41dY' + Ul l
2 (5.13) 

? = 1.0 
'2 = 1.Z 
'2 = 1.5 
7. = 2.5 
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o 

FIG. 4. Averaged total cross section as function offrequency for different 
separation of oscillators. 

387 J. Math. Phys., Vol. 21, No.2, February 1980 

1m z 

Re z 

FIG. 5. The contour used 
for the principle of 
argument. 

near the resonance of the transverse symmetric mode and 

(5.14) 

near the resonance of the parallel symmetric mode. The last 
expressions maintain the coherent character of the scatter­
ing by two oscillators. 

APPENDIX 

Weare going to consider the possibility of zeros of the 
functions jY' ± ~ II lying in the right-half plane (RHP) of 
complex z plane. These functions written explicitly are 
(5 = z/wo) 

F ± (5) = 1 + 5" 2(1 + .3.-y~) ± 2ye - 5"'1(.£ + ~). 
3 n + 5" 172 173 

(AI) 

Since they have no poles in the RHP, the number of zeros is 
equal to the increment of argument when the point is enclos­
ing the RHP (see Fig. 5). 

The change of argument on the semicircle C" (with 
R-oo )is 

..::1 arg(F +)C" = ..::1argR 2e2i
<p [1 + 0 (R - 2)]1 ~21T/2 = 217. 

- (A2) 

On the imaginary axis 5" = iy 

Re [F ± (z:y)] = 1 - y2( 1 + .3.- y n 3 ) 
3 n 2 + y2 

2 (COS)'"17 y sinY17 ) ± Y --3- + --2- , 

17 17 
(A3) 

Im[F ± (iy)] 

_ 2 Y[ n 2y3 ± 3( ycoSY17 + sinY17 )]. (A4) 
3 n 2 + y2 172 173 

When n17 > 4, one can numerically check that 

Im[F±(iy)]>O for oo>y>O, 

Im[F ±(iy)] <0 for O>y> - 00, 
(AS) 

i.e., the contour (REF ± ,ImP ± ) crosses the real F ± axis 
only for y = 0. Always for F + and for F _ when 2y < 173, 

these crossing points lie on the positive part of ReF ± axis. 
Therefore, the contours F + encircle the center of coordinate 
system and, wheny varies from + 00 to - 00, the change of 
argF ± is equal to - 217. The total change of the argF ± is 
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equal to 0, which proves that there are no zeros ofF ± in the 
RHP of the z plane. 

When 2y> 'TJ\ the crossing points for F _ lie on the 
negative part of the ReF _ axis. There is no change of argF _ 
when f moves along the imaginary axis. The total change of 
the argument of F _ remains equal to 21T which shows that 
there is one root ofF _ lying in the RHP of z plane. This root 
is real and is responsible for the instability in the model dis­
cussed in Sec. IV. 

The solutions of the model we have been discussing are 
valid only for stable situations, and then the condition is 
always satisfied. 

A similar discussion can be given for transverse modes 
and functions H ± U1 . 
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The scattering of electromagnetic waves by an infinite dielectric cylinder with variable dielectric 
permeability presents, in general, certain mathematical difficulties regarding the construction of 
rigorous solutions. We give a new divergenceless tensor Green's function, specially appropriate 
for cylindrical symmetry, and, in terms of it, present new scattering integral equations. We prove 
that the series for med by all successive iterations of those scattering integral equations converge 
under certain conditions. Suitable transformations lead to new integral equations with 
Hilbert-Schmidt kernels, which imply further rigorous results. 

I. INTRODUCTION 

The scattering of electromagnetic (e.m.) waves by phys­
ical systems which can be assimilated to infinite cylinders 
constitutes an important branch of e.m. scattering theory. 
Moreover, it also provides a useful tool for investigating the 
dielectric properties of those systems, as it often happens in 
the fields of radio- and microwaves, and even of optics (plas­
ma columns, meteor trails consisting oflong columns of ion­
ized gas, optical fibers,···). Compared to e.m. scattering by 
spherical systems, the corresponding study for infinite cylin­
ders appears as less developed. Explicit solutions are known 
for homogeneous dielectric cylinders, while the more diffi­
cult case of inhomogeneous ones, of considerable physical 
and mathematical interest as well (our previous examples 
are, frequently, inhomogeneous dielectric cylinders), has 
been less explored. On the other hand, most research has 
concentrated on the case where the incoming wave vector is 
orthogonal to the axis of the cylinder, although the situation 
corresponding to oblique incidence has also received atten­
tion. As a suitable set of references on e.m. scattering by 
cylinders and related subjects. 1-9 

A general study of e.m. scattering by infinite dielectric 
cylinders faces, among others, the following interrelated dif­
ficulties: (a) the vector and transverse (divergenceless) na­
ture of e.m. fields in situations showing cylindrical symme­
try , (b) the case of oblique incidence, (c) for inhomogeneous 
cylinders, the wave equations and, then, the associated scat­
tering integral equations contain additional derivatives of 
fields, which come from the very structure of Maxwell's 
equations and of the matter equations. 

In this paper, we shall present a general and rigorous 
approach to the infinite cylinder scattering problem which 
solves the above difficulties (a), (b), and (c). Our main results 
are: (i) we give a new divergenceless tensor Green's function, 
G CT, specially appropriate for cylindrical symmetry, in or­
der to cope both with difficulties (a) and (b) (Sec. 3), (ii) we 
present new scattering integral equations in terms of G CT 

and, through suitable transformations, we prove that the se­
ries formed by the iterations of those integral equations con-

verge under certain conditions, thereby solving the above 
difficulty (c) as well (Sec. 4), (iii) we reduce the scattering 
integral equations to a new set with Hilbert-Schmidt ker­
nels, which implies further convergence results (Sec. 5). 
Some approximate estimates of the convergence conditions 
are also presented (Sees. 4 and 5). 

II. TIME-INDEPENDENT FORMULATION OF 
SCATTERING PROBLEM 

We consider a macroscopically homogeneous and iso­
tropic infinite medium (say, the air), with constant dielectric 
permeability to = 1, vanishing conductivity and magnetic 
permeability equal to that of the vacuum. Inside it, there is a 
dielectric cylinder of infinite length, whose cross section fl 
has an arbitrary shape (circular, elliptic, ... ). The coordinate 
system is chosen so that the x 3 -axis is parallel to the axis of 
the cylinder and if3 will denote a unit vector along it. The 
position of a point in space is represented by ( p,x3 ), where 
p = (XI ,x2 ) is a two-dimensional vector orthogonal to Ii]. 

The dielectric cylinder has variable dielectric perme­
ability t( p) ( p varying inside fl) and the same conductivity 
and magnetic permeability as the surrounding infinite 
medium. 

A classical monochromatic (e.m.) wave propagates in 
the remote past at infinite distance from the cylinder with 
wave vector k = (k,k3 ). The two-dimensional wave vector 
k = (kl ,k2 ) is orthogonal to if3 and k = (k.k) 1/2 > O. We re­
present the e.m. wave by the magnetic field Ho(k,).) 
Xexpi(kp + k 3 x 3 ) (time-dependent terms being factored 
out in this paper). Here, Ho (k,). ) is a complex polarization 
vector such that k.Ho(k'}' ) = 0 (the polarization index A 
takes only two values), and 

~ Ho(k;" )aH ~(k;")[3 = oa[3 - ka k[3 , a,[3 = 1,2,3. + k2+kj 
(2.1) 

Let H ( p).expik]x 3 be the total complex magnetic field de­
scribing the propagation of the e.m. wave and its scattering 
by the cylinder. The reason for using H instead if or jj is due 
to the simplification for the mathematical developments. 
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The fact that E( p) be x 3 -independent leads naturally to fac­
tor out expik3 x 3 • Maxwell's equations1o

.
1l and the above fac­

torization lead to the following basic equations for 
ii = (Ha)' a = 1,2,3: 

(Ll I'j+ k 2)ii = J, }: I a:" H" + ik, H, = 0, 

0, p outside n 
J = - (E - 1)(k 2 + k Dii - (V InE) 

X [(Vxii) + ik3ii., xii], p inside n, 

(2.2) 

(2.3) 

where 
a2 a2 

Ll =-+-. 
p ax~ ax~ 

We shall assume that E, aEiax l , and aElaxz are finite 
and continuous both inside and at the boundary of the cylin­
der, without any discontinuity. Regarding a 2E1ax"ax{3' 
a,/3 = 1,2, they are assumed to be finite and continuous al­
most everywhere inside and at the boundary of n, but they 
are allowed to have a finite number of finite discontinuities. 
We remark that our treatment will be valid, without modifi­
cations, for e.m. scattering by a finite number of dielectric 
cylinders (each of which fulfills the above conditions) whose 
axes be parallel to one another. 

III. THE CYLINDRICAL TRANSVERSE TENSOR 
GREEN'S FUNCTION 

We shall start by introducing the following tensor 
Green's function G eT( p) = [G ;J( p)], a,/3 = 1,2,3 ("CT" 
standing for "cylindrical transverse," for reasons which will 
become obvious soon), in order to satisfy automatically the 
second Eg. (2.2), and whose interest will be shortly 
appreciated: 

G~J (p) 
(t.{l 1,2,~ 

= _1_ f d 21 expl1.p 
(21T)2 k 2 + k ~ { 

[lal{3]C - (k 2 + kD8a(3 

f - (k 2 + ic) 

_ [la 1{3 r }, c-+O 4 , 

12 + k ~ 

1

1,'/(3, a,/3 = 1,2, 

10k" a = 1,2, /3= 3, 
[I 1(3 r =' . 

a k 3,1{3' a = 3, /3 = 1,2, 

k"j, a=/3=3 
Notice that G CT is a symmetric tensor. 

Two important properties of G CT are: 

(1) ± ~ G~J( p) + ikJG;J( p) = 0, 
(!-- 1 Jxu 

(3.1) 

(3.2) 

/3 = 1,2,3, (3.3), 

390 J. Math. Phys., Vol. 21, No.2, February 1980 

(2) (Ll p + k 2)G ~J( p - p') = 0 ~J( p - p'), a,/3 = 1,2,3. 
(3.4) 

where we have also introduced what may well be called the 
cylindrical transverse Dirac's o-function: 
OCT( p) = [8;J( p)], 

The latter also fulfills 

± ~~J( p) + ik3 8;J( p) = 0, /3 = 1,2,3. 
((~ I ax" 

Further formal properties which help to clarify the previous 
developments and statements are the following. Let 
A ( p) = [Aa( p)], a = 1,2,3 be an arbitrary vector and let us 
introduce the new vectors: 

AZ·1(p) = f dZp/GcT(p_p/)A(p'), 

Ai'T( p) = f dZp'oCT( p - p/)A (p'). 

Then: (i) both A~T( p) and A~T( p) satisfy the second Eq. 
(2.2) and (Ll + k z)A~r( p) = A~T( p), (ii) if A (p) fulfills 

p --
the second Eq. (2.2), one has A ~T( p) = A ( p) and 
(Ll p + k 2)A~T( p) = A (p). 

The formal proofs of the above properties proceed 
through elementary Fourier transformations, and, for bre­
vity, we omit them. 

Let 

(I) k I I - _1_ f d 21 expl1.p , £-+0 + (3.6) 
H 0 ( p) - ir f _ (k 2 + ic) 

be Hankel's function of first kind and order zero with outgo­
ing-wave behavior. 12 Its short distance behavior is (r being 
Euler's constant): 

H~)IJ(Z)-+ 1 _ Z2 + 2i {[In(~) + r] 
z .() 4 1T 2 

X (1 - :) + :} + 0 (Z4 C), 
(3.7) 

where 0 (Z4 - E) vanishes as Z4 - E for any small strictly posi­
tive c, for z-+D. Upon starting from the standard large-dis­
tance behavior of H~}l, 13 one proves easily that if Ipl-+oo, for 
fixed p/lpl, p/ (k' = (k Ilpl),p): 

Hi/J(k I p - p/ I) -+[211Tk I p I J 1/2.expi(k I p I - 1T/4) 

·exp( - ik' p'). (3.8) 

Upon comparing Eqs. (3.1) and (3.6) and differentiat­
ing, one finds the following representation for G CT in terms 
of Hankel's function H 61

): 
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G () = __ k_3 _. _Xa_ [k (dHg)(Z») _ il k31(dH&1)(z») ], 
:3~1.2 p 4(k2+kD Ipi dz z=klpl dz z= +ijkJllpl 

(3.10) 

GfJ(p)= - i [k2Hg)(klpl)+k~Hg>C+ilk31Ipl)]. 
- 4(k 2 + kD 

(3.11 ) 

Another important property is: all G ~J( p), for a,(3 = 1,2,3, 
diverge only as Inlpl, if Ipl-O. This follows easily by com­
bining Eqs. (3.9)-(3.11) with Eq. (3.7) and noticing that the 
11 I p 12 and 111 pi singularities cancel exactly. 

Thus, the tensor Green's function defined in Eq.(3. 1) 
and (3.2), so that it automatically fulfills the second Eq. (2.2) 
(say, so that it is divergenceless or "transverse"), is as singu­
lar asH~i)(k I pi) as Ipl-Oand no more. Actually, G CT

( p) 
is the direct generalization to cylindrical geometry of a cer­
tain divergenceless Green's function, G T ( p,x3 ) introduced 
in a sketchy way by Morse and Feshbachs and studied in 
detail in previous works, and which turned out to be particu­
larly useful in treating e.m. scattering by dielectric finite­
volume defects and diffraction by periodic slabs. 14 

Specifically, one has [/ = (lo) = (1,13)' a = 1,2,3] 

G ~f3( p,x3 ) 

1 f 3-{iaif3-(k2+kD8af3 
(21T)3(k 2 + k D d I f2 _ (k 2 + k ~ + it") 

la 1f3 } . - T expl(lp + 13 x3)' a,(3 = 1,2,3, (3.12) 

and the formal connection between G CT and G T can be easi­
ly seen to be: 

G~J( p) = L+,,,oo dX3 exp( - ik3x3)·G ~f3( px3), 

«,(3 = 1,2,3. (3.13) 

The direct generalization to cylindrical symmetry of the 
commonly used Green's function l

' 

( 
1 a2

) 
r af3 ( p,x3) = - 80f3 + k 2 + k~ . ax

a
axf3 

X (exPi(k 2 + k Dln( p2 + XDI/2) 

41T( p2 + xD I12 
' 

a,(3 = 1,2,3, (3.14) 

namely 

r;'f3( p) = r+oc
oo 

dX3 exp( - ik3x 3)Faf3( P,x3)' 

constitutes another cylindrical tensor Green's function (see 
also Uzunoglu and Hole). However, r ;'f3( p) has the follow­
ing disadvantages: 

(i) it does not satisfy the Eq. (3.3), 
(ii) it is more singular than G ~J( p) as Ipi _0 [r ;'f3( p) 

diverges as 1/ I p 12]. 

For these reasons, and except for some further remarks 
about r;'f3 in Sec. 4, we shall work exclusively with G ~J 
throughout this paper. 

Upon combining Eqs. (3.9)-(3.11) with (3.8), one finds 
the asymptotic behavior of G ~J ( p - p') as I p I - 00 for 
fixed p' and k' = (k Ilpl)p 
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I 
G~J( p - p') 

_ - ~(_2_)1/2.exPi(k I pi - 1T14) exp( - ik'p') 
4 1Tk I p I 

XIHo(k',A')a Ho(k',A')~, a,(3= 1,2,3. (3.15) 
,{ 

Here, k' = (k',k 3 ), the polarization index A' takes only two 
values and the complex polarization vectors jjo(k', A') 
satisfy: 

I Ho(k'A ')a Ho(k'A ')~ 
,{' 

k' k' 
-8 _ a f3 , a ,(3 = 1,2,3, 
- af3 k2+k~ 

k'·jjo(k'A ') = O. 

IV. SCATTERING INTEGRAL EQUATIONS 

The total magnetic field H ( p) which satisfies both Eqs. 
(2.2) and which, in a time-dependent (wave packet) formula­
tion, would coincide with the incoming magnetic field at 
infinite distance from the dielectric cylinder in the remote 
past, satisfies the general scattering integral equation 

jj ( p) = Ho (k,). ) expikp + r d 2p' G CT ( P - p')/( p'). In 
(4.1) 

In fact, the rhs of the equation fulfills both Eqs. (2.2), by 
virtue of properties (3.3) and (3.4). (Recall also the formal 
properties studied after Eq. (3.5).] On the other hand, the 
fulfillment of the incoming-wave condition is warranted, ac­
cording to the general prescriptions of scattering theory, 16 by 
the recipe used to integrate over the singularity at J2 = k 2 in 
Eq. (3.1) [namely, the instruction 12 - k 2 _J2 - (k 2 + it")]. 

By letting I p I - + 00 for fixed pi I p I and recalling 
(3.15), Eq. (4.1) becomes 

H,,(p)-Ho(k,}.)a expikp+ expik I~I 
I p II/_ 

X I Ho(k'A ')a·T(k'A ',kA), a = 1,2,3, (4.2) 
,l' 

where we have introduced the scattering amplitude 

T(k'A ',kA) = _ ~ (~)I/2 exp( - i1T/4) 
4 1Tk 

X L d2p'H~(k'A ') exp( - ik'p'):J( p'). 

(4.3) 

The presence of derivatives of jj ( p) inside the integral 
in Eq. (4.1) prevents a rigorous study of the convergence of 
its iterations, as it stands. Fortunately, the following trans­
formations wi1l1ead to new and mathematically more tracta­
ble integral equations: (i) by applying a standard vector iden­
tityto - G CT

( P - p')! [V InE( p')] X [VXH(p')] J [which 
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contributes to G CT :Jin Eq. (4.1)]. we replace derivatives of 
ii ( p) by derivatives of G Cl( P - p') and V InE( p') plus the 
divergence of certain products of all of them. (ii) by using 
Green's integral theorem. we transform the contribution 
from the above divergence into a line integral over the 
boundary of n. which vanishes since VE = 0 on the latter. 
After some lengthy algebra. one gets the announced integral 
equation: 

H(p) = Ho(k;') expikp + L d 2p'[ G CT( p - p')L (0)( p') 

+ ± BGCT(p -,p') L (1)( P')] H( p'). (4.4) 
j~ I B(xj -xJ 

~GCT(p)= (~G~~(P»). a./3=1.2.3. 
BX j BX j 

L (h) = (L ~"J). a./3 = 1.2.3. h = 0.1.2. 

L<:}J 

L(I) = 

L(2)= 

o 

o 

~ BlnE 
- £.., E30'3--

O'~ I Bx~ 
o 

~ BlnE o £.., E I0'3--

O'~ I Bx~ 

3 BlnE 
L E

2a3 -a' 
O'~I X" 

o 

o 

~ Bln€ 
£.., E20'2 --,-
O'~I BxO' 

~ BlnE 
£.., E30'2--
O'~ I Bx~ 

(4.5) 

(4.6) 

• (4.7) 

. (4.8) 

E a{3y is the totally antisymmetric tensor (E 123 = + 1). 

Equation (4.4) does allow one to construct a rigorous 
iterative solution for H ( p). Let us introduce 

H(O)( p) = Ho(k;') expikp. (4.9) 

a = Mpax L d 2p'( {3.~ I IG~J( p - p') I· IL if;( p') 1 

'\' = 1,2.3 

+ ± ± I BG~J(~-,P') 1·IL~~(p')I). (4.10) 
,~I{3.y~1 B(x j Xj) 

Then. the following series. obtained by successive iterations 
ofEq. (4.4): 
_ + oc _ 

H( p) = L H(n)( p). (4.11) 
n=O 

H(n)( p) = Ld 2p' (G CT( P _ p')L (0)( p') 

392 

+ ± BG CT( P -, p') L (1)( P'»)'H(n - 1)( p'). 
j~ I B(x j -xJ 

n = 1.2.3..... (4.12) 
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converges when a < 1. since 

I I 
Max,._ I.U IHo(k,J. L I 

Max H,. ( p) .;; ----=-:-=--'---~---'-
p 1 - a 

l' -- 1.2.J 

The proof proceeds by the direct majoration 
Max p IHsn)( p) I';;a Max p IH;~ - 1)( p) 1 and the 

v=- 1 .. 2,3 v = 1.2~3 

summatIOn of the resulting geometric series. Notice that 
G~J( p) and BG~J( p)/Bxj diverge as lnl pi and I pl-I for 
I pl-+o. respectively. Since. for finite p. 

Slp'l<T/d 2p' Ilnl p-p'll < + 00 and 
Slp'l<T/d 2p'(1 p_p'I)-1 < + 00 (1Jbeingasmallstrictly 
positive fixed number). one proves easily that a < + 00. un­
der the assumed conditions on E( p). 

The convergence condition a < 1 holds when E( p) is 
close to 1 and varies slowly for any p inside n. 

Having established this convergence result. a comment 
on the practical usefulness of Eq. (4.1) is in order. When 
a < 1. the series generated by all the successive iterations of 
Eq. (4.1) provides another convergent representation for 
H ( p). which is. moreover. simpler than the series obtained 
by iterating (4.4). In fact. the nth iterate ofEq. (4.1) be­
comes. by applying to it the same transformations which led 
from Eq. (4.1) to Eq. (4.4). the nth term in the series obtained 
by iterating (4.4). Since the latter series converges. so does 
that for (4.1). 

Let us consider the analogue ofEq. (4.1) using r C in­
stead of G CT. namely 

H(p)=H(O)(p) + L d 2 pT C(p_p')](p'). (4.13) 

Then: (a) One can prove formally that the nth iterate of Eq. 
(4.13) coincides with H(n) [Eq. (4.12)]. The proof proceeds 
by noticing that sinceH(O) [Eq. (4.9)] satisfies the second Eq. 
(2.2). so does the first iterate of (4.13) [even if r C fails to 
satisfy Eq. (3.3)]. and generalizing inductively. for higher 
iterates of (4.13). 

(b) Equation (4.13) can be easily shown to lead to the 
asymptotic behavior (4.2). with the same scattering ampli­
tude (4.3). 

In spite of the formal equivalence between (4.1) and 
(4.13). a convergence prooffor the iterations of(4.13) similar 
to that for (4.11) breaks down. In fact. the analog of a [Eq. 
(4.10)]. with G CT replaced by r c. diverges due to the more 
singular behavior of the latter as I p - p' 1-+0 

(Maxp ( d 2 p' (I p_p'!")-I = 00 forn>2). 
JI p'l <n 

We shall study the convergence condition a < 1 undel 
the following assumptions: 

(a) E( p) varies slowly throughout n (although it is not 
constant) so that the contributions from L ~J and L ~J in 
Eqs. (4.4) and (4.10) are negligible (although they do not 
vanish exactly) compared to L <:}J. which. in tum, reduces 
approximately to - (€ -1 )(k 2 + k ~ ).8 a{3 (E being inter­
preted as an average value of E( p) in n ). Notice that if €( p) 
was a constant throughout n and was discontinuous at the 
boundary of n. we would violate the assumptions made in 
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Sec. 2, and our previous developments could be expected to 
lose their validity, in general. 

(b) If 0(11 ) is a length characterizing the size of 11 [if 11 is 
circular, 0(11) is the radius], the conditions ko(I1)< 1 and 
k3 a(11 )< 1 hold, that is, the wavelength is larger than a(11 ). 

Then, by replacing G ~J( p - p'), a,/3 = 1,2,3 by the 
most singular contributions for small I p - p'l (which are 
logarithmically divergent) and performing some approxi­
mate estimates, the convergence condition becomes a < 1, 
where a is the largest of the following two numbers 

I € - 11 [[ ko(11 )] 2 Ilnka(l1) I + [k3 0(11 ) P 
2 

X IInk3 0(11 ) 1], 

I € - 11 {[ (ko(11 W + 2(k3 a(11 W] Ilnko(l1) I 
4 

+ (k3 a(11 W I lnk3 a(l1) I}· 
For other rigorous approaches to long-wavelength e.m. 

scattering, see Ref. 17. 

v. REDUCTION TO INTEGRAL EQUATIONS WITH 
HILBERT -SCHMIDT KERNELS 

The structure of the kernels in Eq. (4.4) and the fact that 
aG CT

( p - p')/a(x; - x;) diverges as 111 p - p' I for 
I p - p' 1-0, prevents those kernels from being Hilbert­
Schmidt. In order to derive further rigorous results, we shall 
transform Eq. (4.4) into a new system whose kernels are 
Hilbert-Schmidt. 

We shall have to add the following new assumption: At 
each p in 11 there exist three 3 X 3 matrices [L (h)( p)] 112 
which are square roots of L (h)( p), respectively 
{[L (h)( p)] IIZ}2 = L (h)( p), h = 0,1,2. For later con­
venience, we shall introduce, for any p,p' inside and at the 
boundary of 11: 

Q(h)( p) = [L (h)( p)]112fl( p), h = 0,1,2, (5.1) 

Q~h)( p) = [L (h)( p)] 112 {flo (fli ) expikp 

+ L d 2p' [G CT
( P - p')L (O)(p') 

+ ± aG CT( p -, p') L (1)( P')] 
;= I a(x; - x;) 

X flo(f.).) eXPikp'}, h = 0,1,2, (5.2) 

M(h.O)( p,p') 

= [L(h)(p)]112 L d 2p" [GCT(P_p")L(O)(P") 

+ ± aG
CT

( p - p") L (t)( ")] 

;= I a(x; - x;') p 

XG CT( p" _ p')[L (0)( p')] 112, h = 0,1,2, 

M(h.,)( p,p') 

= [L (h)( p)]I12 L d 2p" [G CT( P _ p")L (0)( p") 

+ ± aG
CT

( p - p") L (j)( ")] 

j = I a(Xj - xl') p 
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(5.3) 

aG CT
(" ') X P - P [L (1)( p')] 112 i = 1 2 h = ° I 2. 

a(x;' - x;) " , , , 

(5.4) 

Then, iterating Eq. (4.4) once, multiplying the once it­
erated equation by [L (h)( p)] 1/2 and using Eqs. (5.1-4), one 
gets the announced equations: 

Q (h) (p) = Q~h)( p) 
h = 0,1,2 

+ hto L d 2p'M(h,h')( p,p'). Q(h')( p'). 

(5.5) 
The reasons for having iterated Eq. (4.4) and having 

introducedQ'sandM'swiIlbecomeclearuponshowingthat 
the kernels of(5.5) are Hilbert-Schmidt. We shall introduce 
L 2-norms for the set of three vectors Q = (Q(0),Q(I),Q(2», 
and for the set of nine 3 X 3 matrices M = [M (h,h .)] respec­
tivelyas 

IIQ 112 = Ltoatl L d2pIQ~h)( p)1
2r2

, 

IIMI12 = Lhtoa'~IL d 2
pd

2
p' IM~l')(p,p')12r2, 

and so on for II Qo 112, with Qo = (Q&0),Qg),Q~2». 
Then, one has the following results: 
(a) The set of nine 3 X 3 matrix integral kernels M is 

Hilbert-Schmidt: 11M 112 < + 00. In fact, as commented 
before, aG CT( p - p')la(x; - x;) diverges as (I p - p' I)-I 
for I p - p' 1-0, but the iteration involved in the transfor­
mation leading from Eq. (4.4) to Eq. (5.5) or, equivalently, 
the integration over p" appearing in Eqs. (5.3) and (5.4) are 
enough to smooth out the (I p - p' I) -1 singularity. A de­
tailed inspection shows that the singularities in M (h,h .)( p,p') 
as I p - p' 1-0 are of the following types: 

/ _ r d2 ,,1 I 
1- Jlp"I<'1 p Ip-p"I'lp"-p'I' 

/2= r d2p"ln(klp'-p"I). ,,1 , 
Jlp"l<11 I p -pi 

/3= r d 2p"ln(klp-p"I)·ln(klpH- p/I), 
JI p"1 <'1 

'TJ being a small strictly positive fixed number. By setting 
p' = 0, choosing p along the XI axis, introducing polar co­
ordinates for the p" -integration and integrating over I p" I 
first, one finds 

/1 = f1T dIP In { ['TJ - I p I coStp 

+ ('TJ2 + Ipl2 - 21pl'TJ COStp)1/2] (Ipl [1 - COStp])-1 

which diverges as Inl pi for I pl-o· By looking at the expres­
sions for J2 , J 3 , one realizes that they are less singular than 
/1 for I p - p' 1-0· On the other hand, the factors 
[L (h)( p)] 112 (which are assumed to exist) at right and left in 
Eqs. (5.1 )-(5.4) and the subsequent reduction of M 's to p,p/ 
varying inside 11 { [L (h)( p)] 112 = ° for p outside 11!j elimi­
nate any possible divergence in the p- and p'-integrations as 
I p 1-00, I p' 1-00. All thesefacts imply II M 112 < + 00 
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The factors [L (h )(p)] liZ are the natural generalization 
to the actual vector case of a simpler factor, which proves 
useful in studying the scattering integral equation for a non­
relativistic scalar quantum particle, which interacts with an 
external potential V(X). In fact, in the latter (quantum) case, 
the multiplication by V 112 transforms the scattering integral 
equation into another one whose kernel is Hilbert­
Schmidt. IS 

(b) One has IIQo liz < + 00. This property comes from 
the factor [L (h)(p)P12 in Eq. (5.2) and the fact that 
Slp'l <1J d Zp/llnl p - p'li < + 00 and 
Slp'l <1J d Zp/(lp - p/l) - I < + 00 for finite p. 

(c) Assume 11M liz < 1. Then, the series for Q(h)( p), 
h = 0,1,2 obtained by successive iterations ofEq. (5.5) con­
verge. In fact, by iterating Eq. (5.5), majorizing term by term 
in L z -norm and summing the resulting geometric series, one 

gets IIQ liz «1 - 11M liz) - 1·IIQo liz· 
(d) Moreover, since IIMllz < + 00 and IIQoliz < + 00, 

the modified Fredholm theory gives the solution ofEq. (5.5) 
as a ratio of two series, provided that the modified Fredholm 
determinant does not vanish. Both series always converge 
for any cross section of the cylinder and any magnitUde and 
variation of E( p )(which be compatible with the assumptions 
made upon it). We shall omit the detailed expressions for the 
Fredholm series. 19 

We shall study briefly the convergence condition 
11M liz < 1 under the same simplifying assumptions (a) 
k( p)~E, L (1) and L (Z) are neglected, etc.], and (b) [the 
wavelength is larger than a characteristic length a(l1 ) of fJ ] 
as in Sec. 4. Again, the contributions from JEIJx j , i = 1,2 
are taken as negligible. Upon performing the same approxi­
mation on G~; as there, the condition 11M liz < 1 becomes 

IE-II {{[ka(fJ)p Ilnka(fJ)1 + [k3 a(fJ)]Z 
2 

X Ilnk3 a(fJ ) I }Z 

+ ~ {[ (ka(fJ W + 2(k3 a(fJ W] 
X Ilnka(fJ) \ - (k3a(fJW Ilnk3a(fJ)IP}IIZ < 1. 

This condition, as well as the one obtained at the end of Sec. 
4, ensure the convergence of the iterations of Eqs. (4.1 ) [or 
(4.4)] and (5.5), respectively, for suitably small values of 
ka(fJ ) and k3 a(fJ). The latter may well correspond, phys­
ically, to the domain of radio-and, even, microwaves. In the 
optical domain, at least ka(fJ) is, frequently, much larger 
than 1, so that our short-distance approximation for G CT 

fails. If ka(fJ » 1 and k3 a(fJ » 1, and under the same condi­
tions upon E, the leading contributions to both a and 11M liz 
can be estimated by using Eq. (3.15). One finds: 

a~2 [~]IIZ. IE - 11 {[ka(fJ)f + [k3a(fJ)Y}, 
ka(fJ ) 
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IIMI12~[ 1T ]1/2' IE _ 11 
2ka(fJ ) 

X {[ka(fJ)]2 + [k,a(fJ)]2}. 

Then, the series of iterations for Eqs. (4.4) and (5.5) may still 
converge provided that IE - 11 be sufficiently small. 
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The equations of plane, steady nondissipative magnetogasdynamics are formulated in terms of an 
exterior differential system. Reciprocal-type invariant transformations are derived as symmetries 
of this system. 

1. INTRODUCTION 

It was Haar l in 1928 who first presented explicitly a 
class of transformations which leave invariant, up to the 
equation of state, the governing equations of plane potential 
gasdynamics. However, it may be shown that the pressure­
density approximation to the adiabatic gas law introduced as 
early as 1904 by Chaplygin2 in his now classical work on gas 
jets may be set in the context of a class of Backlund transfor­
mations of the hodograph equations of gasdynamics 
(Loewner3). 

In 1938, Bateman4 constructed a further class of trans­
formations which leave invariant the gasdynamic equations. 
These have been termed the "reciprocal relations" and a spe­
cialization of these were used by Tsien5 in connection with 
the approximation of certain subsonic adiabatic gas flows. 
Bateman6 subsequently observed that both the Haar trans­
formations and the reciprocal relations are of the Backlund 
type. Since that time reciprocal and other invariant transfor­
mations have been the subject of extensive enquiry.7-23 

In the present paper, a new class of transformations are 
introduced which leave invariant the equations of two-di­
mensional, steady, nondissipative magnetogasdynamics. 
The basic equations may be written in the form off our con­
servation laws22 

alA ~ - a2 A ; = 0, i = 1, ... ,4, 

together with the relation 

J-l(uH2 - vHI ) = a, 

where [A;] is the matrix 

[An 
puv -J-l2H I H 2 

- 1.9' + pv2 
- J-l 2Hi) 

pv 

f.lH2 

- 1.9' + pu2 
- J-l 2Hn 

puv - J-l 2H I H2 

-pu 

- f.lHI 

(1.1) 

(1.2) 

(1.3) 
while.9' is the total magnetic pressure,p is the gas density, u 
and v are the velocity components, Hi (i = 1,2) are the com­
ponents of the magnetic field, J-l is the magnetic permeability 
(assumed constant), and a is a constant. 

Equations in the form of conservation laws in two inde­
pendent variables may be conveniently expressed in terms of 
differentia11-forms. Thus, if we coordinatize]Rs by Xl, x2

, U, 

v, .9', p, HI , and H2 we may introduce coordinates Wi 

(i = 1, ... ,4) on ]R4 and an exterior differential system.2' on ]Rs 
X]R4 whose solutions are the solutions of the system (1.1)­
(1.3), namely, the exterior ideal generated by the O-form 

h: = J-l(uH2 - vHI ) - a, (1.4) 

and the I-forms 

(J i: = dw i 
- A ~ dx" . (1.5) 

A solution of.2' will be defined as a two-dimensional 
submanifold (ifJ,N), ifJ: N--+]R8 X ]R4 which is transversal to 
the coordinates xu, and satisfies 

ifJ *.2' = O. 

A solution of.2' is therefore given locally by a map of the 
form 

Xl 

x 2 

U(XI, x 2) 

V(XI, x 2
) 

.9' (Xl, x 2) 

p(x I ,X2) 

HI (XI,X2) 

H 2(X
I
, x 2

) 

WI(XI, x 2) 

W
2
(X

I
, x 2

) 

W 4(XI, x 2 

such that u, v, .9, p, HI' and H2 satisfy the system (1.1)­
(1.3). 

A diffeomorphism if; of ]R 8 X ]R4 which satisfies 
if; * .2' C .2' will be called a symmetry of .2'. Thus, if if; is a 
symmetry of .2', and (ifJ,N) is a solution of.2', then so is 
(if; 0 ifJ,N) [provided if; 0 ifJ is transversal to the coordinates 
(x") ]. We shall demonstrate in Sec. 2 that reciprocal type 
symmetries of.2' exist. 
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2. RECIPROCAL TYPE SYMMETRIES OF ~ 

Consider a diffeomorphism", ofR8 X R4 which is linear 
in the coordinates x a

, (ti, namely 

and 

where B j, C~, b;, and c~ are constants. The condition 

"'-~ C~ 

(2.1) 

(2.2) 

may now be used to determine the remaining quantities 

u' : = ",-u, v': = ",-v, 9': = "'-9, p': = ",-p 

H;: = ",-H., i= 1,2, 

as follows. 
From Eqs. (2.1) and (2.2) 

",_pi = "'_ dwi _ ",-A ~.",- dxa 

= b i dw j _ ci dxa _ .1.-A i (B k dw j + C k dxO
) 

j ° 'f'kj a' 

and from (1.4) and (1.5) 

dw j 
= A ~ dxa, mod ~, 

so that 

",_pi = [b;A~ +c~ -A'~(B;A~ +C~)]dxa, mod~, 

where (2.3) 

A '~ : = "'-A ~ = A ~ 0 "'. 

Thus, ",_piE~ iff 

b;A~ +c~ -A'UB;A~ +C~)=O. (2.4) 

The condition (2.4) provides eight equations for the six un­
knowns in terms ofu, v, 9 ,p, and the Hi (i = 1,2), together 
with the constants b;, c~, B;, and C ~. The requirement 

",-h = lh, (2.5) 

where 1 is a constant, provides a ninth equation. Thus, in 
general, it is to be expected that it will be necessary to impose 
three additional constraints in order to obtain symmetries of 
the present type. Such overconstrained systems are charac­
teristic of the algebra associated with Backlund transforma­
tions. It is possible however to reduce the number of con­
straints to two as is evidenced in the following illustration of 
the method. I 

3. AN INVARIANT TRANSFORMATION 

The matrices [b J], [c~ ], [B ;1, and [C ~ ] are chosen to 
be of the forms 

-b 

[C~] = [On, 
b 

and [A;] is written as 

(3.2) 
[ 

S 
. - V [A ,] = 

J pv 

JiH2 

where 

S: =puv - Ji2H.H2, U: = 9 +pu2 - Ji2Hi , 

V: = 9 + pv2 - Ji2H~ . 

In the above, ai i = 1, 2 and b, c are real constants. It follows 
that 

so that 

- (S+ U)] 
S-U ' 

(3.3) 

det(B;A { + C~) = 2b 2(S2 - UV) = -2 b 2J, (3.4) 

where 

J = 9 2 + 9(pq2 _p2H2) _ pa2. 

Thus, 

[ 
k j k ]~. _ 1 [ S - U 

B jA ° + C a - - 2bJ _ (S - V) 

while 

so that 

(3.5) 

S+ U] 
s+ V ' 

(3.6) 

(3.7) 

(3.8) 

c(2S+ U + V) ] 
c(V - U) 
-a.p[9(u-v)-pa(H. +H2)] . 

- a2 [p9(H. - H 2) - pa(u + v)] 

In this case, the nature of the matricesB; and c~ has guaranteed that A ': = A '~ so that the number of equations for 9', 
p', u', v', andJiH; (i = 1,2,) has been reduced to seven, obtained by comparison of(3.8) and the primed counterpart of (1.3), 
augmented by the constraint (2.5). Thus, in general, 9',p', u', v', andJiH; maybe determined in terms of 9 ,p, u, v, andJiHi 

subject to two constraints on the latter six quantities. 
Now, comparison of the (4,1) and (4,2) terms of(3.8) and 

[ 

p'u'v'-Ji2H;Hi - [9'+P'U'2_P2H;2j] 

. - (9' +p'V,2 - 112H ,2) p'u'v' - 1J
2H '.H i [A II.] = r 2 r 

J p'v' - p'u' ' 

JiHi -pH; 

(3.9) 
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produces the required expressions for the new components 
H ; of the magnetic field in terms of the original magneto gas­
dynamic variables, namely 

pH; = -a2[.9p(HI -H2)-pa(u+v)]/2Jb 

and (3.10) 

pH ~ = a2 [.9 p(HI + H2) + pa(u - v) ]l2Jb 

or, 

a2 -
pH' = - 2Jb [.9 p( 1 - I)H - pa(1 + l)q], (3.11) 

where H : = HI + iH2, q : = U + iv, and similarly for the 
primed quantities. On the other hand, comparison of the 
(3.1) and (3.2) entries of (3.8) and (3.9), yields 

p'u'= -a I P[.9(u-v)-pa(HI +H2)]l2Jb 

and (3.12) 

or, 

p'v' = a l p[ .9(u + v) + pa(HI - H2)]/2Jb, 

alP -
p'q' = - - [.9(1 -l)q - pa(1 + OH]. 

2Jb 
(3.13) 

Now, (2.5) implies that 

2i p'a' = - p! p'q'il' - p'ij' H J, (3.14) 

where a' = la, so that, from (3.11) and (3.13) we obtain the 
expressions for the new gas density and the new gas velocity 
components in the forms 

p' = -al a2ap12b 2a'J (3.15) 

and 

q' = (ba' /a2 a)[ .9(1 - l)q - pa(1 + Oil], (3.16) 

respectively. 
Further, comparison of the (1,2) or (2,1) entries of(3.8) 

and (3.9) gives the new total magnetic pressure, namely 

397 

a a' 
.9' = _1- [.9(u + v) + pa(HI - H2)]2 

2a2 aJ 
c + - [2.9 +p(u - vf _p2(HI -H2)2] 

2bJ 
a2 

- __ 2 _ [.9p(HI + H2) + pa(u - v)Y. 
4J2b 2 

(3.17) 

Finally, the (1,1) terms of(3.8) and (3.9) yield 

J. Math. Phys., Vol. 21, No.2, February 1980 

p'u'v' - p2H; H; 

= (c/2bJ)[ p(u2 - v2) - p2(H i - H D ], (3.18) 

while the (1,2) and (2,1) terms give, for .9' to be defined 
consistently, 

p'(U,2 _ V'2) _ p2(H; 2 _ H ~ 2) 

= (2c/bJ)(puv - p2HI H2)' (3.19) 

The conditions (3.18) and (3.19) may be conveniently com­
bined to give the single relation 

p'q,2 _ p 2H,2 = (c/bJ)(pq2 _ p2H2). (3.20) 

Thus, to summarize, it has been shown that the magnetogas­
dynamic Eqs. (1.1)--(1.3) are invariant under the transfor­
mations defined by (2.1 )--(2.2) subject to the requirement 
(3.20). Moreover, the new magnetogasdynamic variables are 
given explicitly by (3.11) and (3.15)--(3.17). 
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It is shown that the single-mode equations derived from Zakharov's model for Langmuir 
turbulence in a plasma in the presence of an external spatially homogeneous electric field 
oscillating at the electron plasma frequency has nonperiodic chaotic solutions whose power 
spectra have turbulence-like features. Bounds for these chaotic solutions are derived. Typical 
numerical results are presented for the one-dimensional case. 

1. INTRODUCTION 

It has been observed that certain nonlinear ordinary 
differential equations have chaotic or turbulence-like solu­
tions.I-4 A simple example is the Lorenz model for thermal 
convection in a fluid layer. 1 Recently, Ruelle and Takens 
proposed that fluid turbulence can be mathematically char­
acterized by this class of solutions whose trajectories in the 
state space are attracted to a nonempty set ("strange attrac­
tor") which is neither an equilibrium set nor a periodic or­
bit.' On this set, the trajectories exhibit chaotic oscillations. 
Moreover, they are sensitive to variations in the initial condi­
tions. Here, we shall demonstrate that the single-mode equa­
tions derived from the Zakharov's model for Langmuir tur­
bulence in a plasma have nonperiodic chaotic solutions. 

We begin with the following dimensionless form of 
Zakharov's equations describing the nonlinear interaction of 
high-frequency electron oscillations with an ion fluid in the 
presence of an external spatially homogeneous electric field 
oscillating at the electron plasma frequency w p :6-8 

\1.[i aE + \12E - neE + Eo)] = 0, (1) 
'at 

a
2
n _ \12n = \12 [1E12 + Eo·(E + E*)] , (2) 

at 2 

where i = V-I; (-)* denotes complex conjugation, and a·b 
the usual scalar product of two real or complex vectors a and 
b. E = (EI , ... ,EN ) is the complex amplitude of the high­
frequency electric field If given by 

If (t, x) = Re [E(t ,x) exp( - iw p t ) ]; (3) 

and n is a real quantity corresponding to the low-frequency 
perturbation in the ion density from its constant equilibrium 
value no . The units of time t, spatial coordinates x = (XI' 
... ,x N)' electric fields Eo and E, and ion density perturbation 
are respectively, 3/(2aw p), (3/2)a· 1/2 AD , [(64/3)1Tnome 
c~ ] 112 , and (4/3)ano , where a is the electron-ion mass ratio 
mJmi ,AD the Debye length, and c, is the ion acoustic 
speed. Here, Eo = (Eol , ... ,EON ) is a real constant vector cor­
responding to the normalized amplitude of the external elec­
tric field. It is of interest to determine the behavior of the 
solutions of(1) and (2) (with appropriate damping terms) as 
a function of the parameter Eo , in particular, the existence 
of turbulence-like solutions for some Eo ,and the onset of 
such solutions as Eo tends to some threshold values. 

2. SIMPLIFIED MODEL 

Let the spatial domain n be a bounded open subset of 
the N-dimensional Euclidean space RN

, and L 2(n ) denote 
the Hilbert space of real square-integrable functions defined 
on n with inner product (u,v) = Sn u(x)v(x) dn. Let {¢>k} 
be a countable orthonormal basis for L 2(n). We seek solu­
tions to (1) and (2) in the form: 

E(t,x) = I Ek(t)¢>k(X), n(t,x) = Ink(t)¢>k(X). (4) 
k k 

If the boundary of n is sufficiently smooth, then the 
Laplacian with suitable homogeneous boundary conditions 
is a negative operator with a countable point spectrum. We 
may take ¢>k to be the orthonormalized eigenfunction of \12 

corresponding to the eigenvalue Ak = - fl~ . In this case, 
we may substitute (4) into (1) and (2), multiply both sides of 
the equations by ¢>m (x) , and integrate over n to give a coun­
tably infinite system of ordinary differential equations for 
Em and nm: 

(5) 

- fl~Eo'(Em + E:) + I I13mkk,Ek 'Ek, , (6) 
k k' 

where Ek'Ek, = J., jEkjE~'j and 

a mkk , = r ¢>k (X)tPk ,(x)tPm (x) dn. (7) Jfl 

13mkk' = r \12 [¢>k (X)tPk' (x) ltPm (x) dn . (8) JJl 
By retaining only the terms involving Em and nm in (5) 

and (6), we obtain the following simplified equations for a 
single mode m: 

. dEm 2 • 
1---(;1.m -IYm)Em =nm(Eo +amEm), (9) 

dt 

d 2nm dn", 2 --+ 2r", --+ flmnm 
dt 2 dt 

- fl~Eo·(Em + E:n ) + 13m IEm 12, (10) 

where 
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am = f cp~(x)dn, f3m = f 'V2[cp~(x)]CPm(x)dn. In In 
(11) 

Also, we have added the phenomenological damping coeffi­
cients Y m and r m • They may represent Landau damping of 
the high- and low-frequency waves. In what follows, we shall 
analyze the behavior of the solutions of (9) and (10) as Eo 
varies. For brevity, the subscript m in (9) and (10) will be 
omitted in places where ambiguity does not arise. 

A starting point for searching the strange attractor or 
chaotic solutions is to study the nature of the equilibrium 
points as Eo varies. It is known that chaotic solutions could 
arise after finite number of Hopfbifurcations/ therefore we 
shall establish the existence of Hopf bifurcation points. 

3. EQUILIBRIUM POINTS 

Consider the following equations for determining the 
equilibrium points of (9) and (10) for any given Eo: 

(iy - Jl2)E = n(Eo + aE) , (12) 

Jl2n = -Jl2Eo·(E + E*) + f3IEI2. (13) 

Using (13) to eliminate n in (12), we obtain an equation 
forE: 

(iy - Jl2)E = [ - Eo·(E + E*) + f3Jl-2
1 EI2](Eo + aE). 

(14) 

Evidently, since Eo is a real N-dimensional vector and n 
is real, a solution of (14) must be a complex scalar multiple of 
Eo (i.e., E = S Eo for some S = S R + is I)' Thus, the solution 
of (14) reduces to finding S. Note that E = 0 is a solution of 
(14) for any Eo . Substituting E = S Eo into (14) leads to the 
following equations for S Rand S/: 
_(;.t2SR + YS/) 

= {f3Jl - 2(5 ~ + S D - 2sR}(1 + aSR )IIEo liZ, (15) 

YSR - Jl2S1 = {f3Jl- 2(5 ~ + S D - 2SR }aS/IIEo 11 2, 
(16) 

and 

n = {f3Jl - 2(5 ~ + S 7) - 2SR }IIEo 11 2, 

where II Eo 112 = Eo·Eo . 
Dividing (15) by (16) gives 

S~ + S7 = (ay)-1(;.t2S1 - YSR) , 

which implies that a solution must lie on the circle: 

(17) 

(18) 

(SR + _1 )2 + (SI _ L)2 = (Jl4 + y). (19) 
2a 2ay (2ay)2 

Now, we substitute (18) into (16) and solve for SR in 

4. STABILITY OF EQUILIBRIUM 

terms of S/: 
SR = SI(;.t2 + f3y - IIIEo 11 2S/) 

X [y + (2a + f3Jl - 2)IIEo 11 2s1 ] - I . (20) 

Finally, using (20) to eliminate S R in (18) leads to the follow­
ing quadratic equation for S I: 

AS7+BS/+C=0, (21) 

where 

A = [( f3 ly)2 + b2111Eo 114 , (22) 

B = 2(;.t2 f3y - I + yb)IIEo 112 - 2Jl2by - IIIEo 11 4 , (23) 

C = Jl4 + Y - 2Jl211Eo 112 (24) 

b = (2a + f3Jl - 2) . (25) 

If B2 -AC;;;.O or 

II Eo 114 - 4a f3b - 211Eo 112 - (2aylb?;;;.O, (26) 

then (21) has real roots given explicitly by 

S ± - bYJl2 {II"" 112 (;.t2 f3 + yb) 
I - (f3 2 + b2y)IIEo 112 AJQ - bJl2 

± [IIEo 114 - 4a f3b - 211Eo 112 _ (~y Yl 112} (27) 

For II Eo 11 2;;;'0, condition (26) is satisfied if and only if 

IIEoI12;;;'E~c ~2ab- 2[ f3 + (f32 + b2y)I12] . (28) 

Thus, we conclude that for O~ II Eo II < Eoc , the origin 
(E,n,it) = (0 + jO,O,O) is the only equilibrium state of system 
(9) and (10), where it denotes dnldt. When IIEo II = Eoc , a 
new equilibrium state (E,n,it) = (Re(E) + iIm(E),n,O) 
emerges, where Re(E) = SREo, Im(E) = SREo withsi given 
by 

S - bYJl2 (E 2 (;.t2 f3 + Yb») 
1- (f32 + b2y)E~c oc - bJl2 ,(29) 

and SR ,n are given by (20) and (17) respectively. As IIEo II 
increases from Eoc , the foregoing nonzero equilibrium state 
bifurcates into two distinct equilibrium states (5 : Eo 
+ is t Eo ,n + ,0) and (5 R Eo + is 1- Eo ,n - ,0) where S l 
are given by (27), whose corresponding S 1 and n ± are de­
termined respectively by (20) and (17). We note that SR and 
SI depend on IIEo 112. Also, the coefficient C defined by (24) 
vanishes when 

(30) 

Consequently, S 1- also vanishes. Thus, in this case, the equi­
librium set consists of the origin and the point [(5 : 
+ is t )Eo ,n + ,0] . When IIEo II increases from Eoc , we 

have again three distinct equilibrium points. 

Let .~R = Re(E), ~I = Im(E), and z denote the 2(N + I)-dimensional real vector (n,it,ER,E])T, where (.)T denotes 
transposItIOn. We rewnte (9) and (10) in the form: 

dz = f(z;Eo)~ [~Jl2n - 2rit - 2j.t2 Eo·ER + f3 CIIER 112 + IIE/I12)] 
dt - yER + (;.t2 + an)EI . (31) 

- yEI - (;.t2 + an)ER - nEo 
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Let z" = (n",O,E~ ,E~) bean equilibrium point of(31)as given in Sec. 3, and {jz(t )§z(t) - z" . We consider the following 
linearized system of (31) about Z,,: 

d{jz 
-- = J / (zc ;Eo )oz, (32) 

dt 
where J / (zc;Eo) is the Jacobian matrix off at Zc given by 

[ 

_Ofl2 

J I (zc;Eo) = aE~ 

- (Eo + aE~) 

1 

-2r 

° 
° 

o~ 

-yIN 

- ({l2 + ane)IN 

o~ 1 2 (J (E~)r 

({l2 + anC)I.\, ' 

-yIN 

(33) 

where ON and IN are the N-dimensional zero vector and N X N identity matrix respectively. It can be shown (see Appendix) 
that the characteristic polynomial of J / (ze ;Eo) is given by 

det[J /(ze;Eo) -A I 2(N+I) ] 

= [(Y+A)2+({l2+ anef]N(A 2+2rA+ fl2)+2 [(Y+A)2+({l2+ ane)2]N-I 

X [({l2 + anj{«(JE~ - fl2EoHEo + E~) + a (J IIE~112}+ (y + A )(afl2 + (J)Eo·En . (34) 

For the case where Ze = 0, the above expression reduces to 

(35) 

Evidently, when Eo = 0, the spectrum of J / (OjO) is given by [ - y ± jfl2 (multiplicity N), - r ± (r2 - fl2)1I2] , which 
implies the asymptotic stability of the origin for r,r> 0. For Eo t= 0, the eigenvalues A = - r ± jfl2 [multiplicity (N -1)] 
remain invariant, while the remaining eigenvalues are roots of the quartic equation: 

A 4 +2(y+ r)A 3 + ({l4 +fl2 +4yr+ fM 2 +2 [r(f +fl4) + Yfl2]A +fl2[(f +fl4
) -2fl21IEoI12] = 0. (36) 

Obviously, J / (OjEo) has a zero eigenvalue when ilEa 112 = E;e §({l4 + f)/(2fl2) . This coincides with condition (30) for 
which one of the equilibrium points returns to the origin. It can be readily shown by using Routh's criterion9 that the origin 
becomes unstable when II Eo II > Eoe . In fact, (36) has only one unstable root and it is real and positive. Thus, the origin has a 
saddle point structure in a two-dimensional manifold. So we conclude that Hopfbifurcation cannot occur at the origin for any 
value of ilEa II . 

For the case where II Eo II>Eoc ,there exist nonzero equilibrium states Ze which depend on ilEa II. We observe from (34) 
that A = - y ± i({l2 + ane) are stable eigenvalues of J / (ze jEo) with a multiplicity of (N -1). The remaining eigenvalues are 
given by the roots of the quartic equation: 

..1. 4 + a3 A 3 + a2 (IlEo 11M 2 + al (IlEo 11)..1. + ao(IIEo II) = ° . (37) 

where 

a3 = 2(y + r), a2(IIEo II) = f + fl2 +4yr + ({l2 + ane)2, 

al (ilEa II) = 2{r [f + ({l2 + anj2] + Yfl2 + (afl2 + (J)Eo·E~}, (38) 

ao(IIEo II) = fl2[f + ({l2 + anef] + 2{({l2 + ane)[«(JE~ - fl2EOHEo + aE~) 
+ a (J IIE~ 112] + y(afl2 + .B)Eo·E~}, 

where E~ ,E~ , and ne (given in Sec. 3) depend on II Eo II . To determine the value of II Eo II for which Hopfbifurcation occurs, it 
is necessary to determine the existence of purely imaginary roots of(37) for some value of II Eo II . From Routh's criterion, we 
can deduce that if 

(39) 

and 

al (ilEa lI)[a3a2 (ilEa II) - al (ilEa II>] = a~ao(IIEo II) , (40) 

then (38) has a pair of purely imaginary roots given by ..1.= ± {a3aO [a3a2(IIEo II) - al (ilEa II) ]}112j. 
LetEoH be the value of ilEa II such that both (39) and (40) are satisfiedj andi ± (ilEa II) =iR(IIEo II) ± ii[(IIEoll> be the 

roots of (3 7) such that i R (EOH ) = 0. By a lengthy but straightforward computation, it can be shown that i ~ ,the derivative of 
iR with respect to the parameter ilEa II , is given by 

i ~ (ilEa II) = [aja~(IIEo II> +2 al (ilEa lI)a'l (ilEa II) - a3a~ (ilEa 1I)a1 (ilEa II) 

- a3a2 (IlEo lI)a'l (ilEa II) ]{2a3 [a3al <IlEa II) + a~ (ilEa II) -4 ao(IIEo II) ]}-I , (41) 

where a'j denotes the derivative of a j with respect to ilEa II . For Hopfbifurcation, 10 i ~ (EOH ) > 0. Due to the complicated 
dependence of a2 ,aI' and ao on ilEa II , it is difficult to determine the threshold values of ilEa II for Hopfbifurcation. We shall 
resort to numerical computation at this point. 
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We note here that the Hopfbifurcation problem for (9) 
and (10) with spatial dimension Nor dim(E) > 1 can be com­
pletely studied by considering only (37) which is the charac­
teristic equation for the case with N = 1. Since for y> 0 and 
r> 0, the additional eigenvalues A = - A ± i(p,2 + an e

) for 
N> 1 are stable, and a2 ,a3 (liED II) > 0 for all IlEa II, the di­
mension of the unstable manifold associated with a nonzero 
equilibrium state is at most three. 

5. BOUNDS FOR CHAOTIC OSCILLATIONS 

The existence of chaotic oscillations depends on the 
manner in which the stable and unstable manifolds associat­
ed with the equilibrium points intersect with each other. At 
present, there are no readily verifiable analytical sufficient 
conditions for the existence of chaotic solutions for finite 
dimensional systems of ordinary differential equations. 
Here, we assume the existence of chaotic oscillations and 
proceed to derive bounds for their amplitudes, thus provid­
ing estimates for the size of the invariant manifold generated 
by the chaotic oscillations. 

First, we shall make use of a function Vof the form: 

20 I 
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V
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(42) 

to estimate the magnitude of chaotic oscillations of the elec­
tric field where E = ReE + HmE is to be determined. By 
direct computation: 

dV { - -
- = - Y IIER + (!) [y-I (p,2 + an)ImE - ReE1II2 
dt 

+ IIEI + (!) [y-I (p,2 + an)ReE - ImE + y-I nEa ]11 2 

- Hlly-' (p,2 + an)ImE - ReEI1 2 

+ Ily-1 (p,2 + an)ReE - ImE + y-I nED 112]). (43) 

Ifwe set ReE = - a -I Eo. and ImE = 0, then (43) reduces 
to 

dV 

dt 

8 
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- (2a) -2 (1 + f.l4y -2 )IIEo 112} 

- y[jE - E, /2 - (2a)-2(1 +f.l4y-2)IIEo I1 2], (44) 

where E, = - (2a)-1 Eo + if.l2Eo/(2ay). We note that 
with the foregoing choice ofE, n does not appear in (44). 
Moreover, fory> 0, dV Idt < Oatany point E exterior to the 
set S = {E: IE - E, 1 < (2a) -I (1 + f.l4y -2 )1/211Eo II}. Let 
Sf> = IE: V(E) = ~IE + a-IEoI2<D 2). Since for any 15>0, 
S8 is a ball in E-space centered about the point - a -\ Eo 
with radius V2D, it is possible to select a 15 such that ses/j . 
In fact, elementary geometric considerations show that the 
smallest 15 having the foregoing inclusion property is given 
by 8' = (v2a) -I (1 + f.l4y 2 )112IIEo II . Evidently, 
dV Idt < Oat any point EexteriortoSg . This implies that for 
a solution of (31) initiated from any point 
z(O) = (n(O),1i(O),ER (O),E[(O» at t = ° with E(O) = ER (0) 
+ lE[(O) exterior toS,5 ,its corresponding E(t), t > ° either 

eventually enters Sf; at some finite time t 1 > ° and remains in 
S,5 for all t > tl or tends to Sf; as t ---+ 00. Clearly, S,5 con-

/ 
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FIG. 6. IE (t) I and n(t) vs time t corresponding to the solution of (53) and 
(54) with m = I, L = iT!y!IO, r, = 2.0, Yt = 1.0, E~ = 1.625; initial data: 
E (0) = 1.426 + 0.5071i, n(O) = - 40.75 and !i(0) = 34.58. 
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tains all the points E(t) along any chaotic solution of (31) 
when it exists. 

Next, we derive a bound for the magnitude of ion densi­
tyoscillations. Let fi = n + f.l2(3 -I ilEa 112. We can rewrite 
the first two equations in (31) as 

eLf = .sf,Y + [0, (3 1 E - f.l2 (3 -\ Eo 12 r, 
dt 

where,Y = (fiJi) T and 

.cf = [ _°f.l2 -~r] . 

(45) 

(46) 

Given ff(O), the initial data for .Y at t = 0, (45) is equiv­
alent to the integral equation: 

A~(t) = [exp.sft ],,1/(0) + L exp[.sf(t - r)] 

x[0,(3IE(r)-f.l2(3-\EoI2rdr. (47) 

Thus, 

IIA-~(t )11 < Ilexp,cf t 1111,f(O)11 + L I (3 Illexp.sf(t - r)11 

X IE(r) - f.l2 (3 -I Eo 12 dr. (48) 

For f.l2) r> 0, we can find a constant 'Ii> ° such that 
Ilexp (.sf t) II < 'Ii exp( - rt ). Also, we have already estab­
lished that along any chaotic solution E(t )eS,5 or I E(t) 
+ a I Eo 1 <8 = (v2a) -I (1 + f.l4y -2 )112I1Eo II for all t. 
Hence, 

IE(r) - f.l2 (3 -I Eo 1 

= IE(r)+a-IEo -(a-\ + f.l2 (3 -1)Eo I 
< IE(r)+a-IEo 1 + la-1 + f.l2 (3 -I IllEol1 

<8+ la I + f.l2 (3 -\ I IlEa lI<lJIllEo II, (49) 

where lJI = (v2a) -I (1 + f.l4y -2)1/2 + la -I + f.l2 (3-1 I. 
It follows from (48) that 

IIA~(t)II<'Ii{lJIl (3 III EoI12r\ + [I I z(O) II 
- lJIl (3 IllEo 11 2r -I ]exp( - rt)} 
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<;(6max{llz(0)11,'/I I (J IIIEol12r -I}, (50) 

for all t ;>0 and E(0)EE6' When Ilz(O)11 <; '/II (J IllEo 11 2r,l, 
we have II. V(t )11 <;cc, '/II (J IllEo 11 2r- 1 for all t ;>0, a bound 
which is independent of z(O). 

6. ONE-DIMENSIONAL EXAMPLE 

Consider the case where N = 1 with a bounded spatial 
domain n = [O,L ]. Assuming that both E and n vanish at the 
boundary points x = 0 and x = L, we can take rPl. (x) 
= (2/ L ) 112sin(brx/ L ), f.ll. = k1T/ L, k = 1,2···. For this 

case, the coefficients a", and(J", defined in (11) become 

am = SaL (2/L )312sin3(m1Tx/L) dx 

{ 
0 for m even, 

(27/L )1/2/(3m1T) for m odd,' (51) 
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(Jm = SaL ( ~ yl2 :X22 [sin2(m1Tx/L )]sin(m1Tx/L) dx 

{ 
0 for m even, 

- (52) 
- -Sm1T (2/L 5)112/3 for m odd. 

Thus, for an odd integer m, Eqs. (9) and (10) have the 
form: 

dEm (m1T)2 i--- - E +iy E dt L m m m 

w 

[ (
27)112 ] 

= nm Eo + L /(3m1T)Em' 

r , 
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" I II II 
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' '/ 
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FIG. 9. Solution of (53) and (54) with Ei, = 5.05. 

E (0) = - 5.0069 + 3.26742i, nCO) = - 8.63114, li(O) = 1.86353. and oth­
er parameters as given in Fig. 6. 
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FIG. 10, Solution of (53) and (54) with E i, = 10.0, E (0) = - 6.0 + 2.0i, 
11(0) = - 10, ri(O) = 0, and other parameters as given in Fig. 6, 

where Eo is a real nonnegative parameter. 
To illustrate the qualitative features of the solutions of 

the above equations, numerical results are obtained for the 
case where m = 1, L = 1Tly'lO, r l = 2.0, and rl = 1.0. 
These values are chosen to simplify the numerical computa­
tion. They may not correspond to any particular physical 
situation. Numerical results for specific physical situations 
will be presented elsewhere. 

First, we compute the locus of the equilibrium electric 
field E e as a function of E ~ using (27) and (20). Figure 1 
shows the locus in the (E R ,EI )-plane. It can be seen that 
bifurcation occurs at E ~ = E ~c = 0.09974. At E ~ = it 6c 
= 5.05, one of the equilibrium points E e returns to the ori­

gin. As E 6 -+ 00, the locus of one of the equilibrium points is 
asymptotic to the line EI = r /3 -I (2a, + /3,I-l,-' )ER 
= -0.1 ER, while the other one tends to (ER ,EI) 

404 J. Math. Phys., Vol. 21, No.2, February 1980 

= (- 00 ,0). Figure 2 shows the equilibrium ion densities n" 
as a function of E 6. 

Next, we examine the nature of each equilibrium state 
z" for various values of E 6 by determining the roots of (37) 
or the eigenvalues of J f (ze ;Eo). Figure 3 shows the locus of 
the eigenvalues of J f (O;Eo) as E 6 varies. As established in 
Sec. 4, when E 6 < it 6c = 5.05, all the eigenvalues have nega­
tive real parts implying that the origin is asymptotically sta­
ble. When E G exceeds it 6c' one of the real eigenvalues 
crosses the imaginary axis. Consequently, the origin be­
comes unstable. Figure 4 shows the eigenvalue locus of J J 

(zc' ;Eo) for 0.1 <E 6 <40.0, where the components of Z"l 

= (n ' ,a,s ~ Eo ,5 / Eo) are given by (17), (20), and (27). 
We note that for 0.1 <E 6 <0.108, all the eignevalues have 
negative real parts, and at E 6 ;:::0.108, a complex conjugate 
pair of eigenvalues cross the imaginary axis into the right­
half plane. It can be verified that Hopf bifurcation takes 
place at this point. The locus of the eigenvalues of J J (z" ; 
Eo) is shown in Fig. 5. Here, for 0.1 <E 6 <2.669, J f (z" ;Eo) 
has a positive real eigenvalue. When E ~ >2.67, all the eigen­
values of J f (zc ;Eo) are in the left-half plane. 

An inspection of the eigenvalue loci given by Figs. 3-5 
suggests that one might search for the existence of chaotic 
solutions in the neighborhood of Ze C for E 6 > 0.108 (Hopf 
bifurcation point). Numerical integration of (53) and (54) 
with various initial conditions was performed for progres­
sively larger values of E ~. The results suggest that the peri­
odic solutions in the neighborhood of ze+ (whose existence is 
ensured by the Hopfbifurcation theorem) are unstable and 
the bifurcation is subcritical. Figure 6 shows the time-do­
main buildup of a nearly periodic solution which evolves into 
chaotic oscillations. The projection of the trajectory onto the 
(E R ,E I )-plane is shown in Fig. 7. Figures 8-10 show the 
chaotic solutions for various values of E 6. It was found that 
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FIG. 12. Power spectra of the electric field corresponding to the solutions of 
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these solutions are highly sensitive to initial conditions. 
Also, not all trajectories in the z space tend to the chaotic 
solutions as t --+ 00. This is apparent from the fact that for 
0.108<E ~ < if ~c = 5.05, the origin z = 0 is a stable equilib­
rium point, and for any E ~ > if ~ ,ze- is always a stable equi­
librium point. We note from Figures 8b-lOb that in each 
case, there exists a circle with minimum radius r min which 
encloses the projection of the trajectories onto the (E R ,E 1)­
plane. Figure 11 shows the variation of r min as a function 
lEo I as obtained from the numerical solutions. Evidently, 
r min can be bounded by a lin~ar fundtion of 1 Eo I. This is 
consistent with the estimate 8 given in Sec. 5. It can be read­
ily verified that in each case, the projection of the trajectories 
of the chaotic oscillations onto the (E R ,E I)-plane is com­
pletel~ contained in Eg = {E: IE + a -I Eo 1 

<v28 = 8.3445jEo j}, where a = 1.204367. Also, we ob­
serve from these solutions that the maximum depth of the 
ion density troughs increases with E ~, and the electric field 
oscillates more rapidly during the ion density dips. This can 
be roughly explained by considering the following equations 
for E Rand E [ derived from (31): 

d
2
ER (2 an) dER 

--;Jt2 + Y - (P2 + an) dt 
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(55) 

(56) 

Considering n as a slowly time-varying parameter, the fre­
quency of electric-field oscillations is roughly equal to 
w = [y(p2 + an)2 - ayn(p2 + an)-I ]112, and the effec­
tive damping coefficient is 2y - an(p2 + an) -I. Let T de­
note the time interval corresponding to an ion density dip, 
and t * is the minimum point of n over T where n(t *) = O. 
Then w(t *) > w(t) for all t in T such that n(t ) and 
p,z + an(t ) have the same sign. This condition is satisfied for 
the solutions shown here. 

Figure 12 shows the power spectra of the electric field 
computed by means of the fast Fourier transform method. 
The results resemble those corresponding to turbulence. 
Also, the spectral bandwidth increases with E ~ as expected 
from physical considerations. Finally, the truncated discrete 
version of the autocovariance function of E given by 

p(jJ1 ) = ( 1. N -t. + I [E (iJ1 ) - if 1 
N-J+l) ;=1 

X{E [(i + j -1)J1 1 - if}* (57) 

is computed, where if denotes the mean-value of E, and J1 is 
the time-step size. Figures 13a-13c show the real and imagi­
nary parts of p(jJ1 ) for E ~ = 1.669, 5.05 and 10.0. It can be 
seen that both Re p(jJ1 ) and 1m p(jJ1 ) decay from their 
maximum values and then fluctuate about zero. But we can­
not deduce that the autocovariance function actually tends 
to zero as the time delay 'T' --+ 00 as in the case of solutions on 
a strange attractor. 

7. CONCLUDING REMARKS 

It was found that the single-mode equations derived 
from the Zakharov's model for Langmuir turbulence in a 
plasma with phenomenological damping exhibit chaotic so­
lutions whose power spectra have turbulence-like features. 
In the case of mUltiple modes, if all the mode coupling terms 
are omitted, then we obtain sets of uncoupled equations of 
the form (9) and (10). Each set is capable of producing chaot­
ic solutions when E ~ exceeds a certain threshold value (gen­
erally different for each mode). The total power spectrum of 
the electric field is simply the sum of the single-mode power 
spectra. This seems to imply that energy transfer between 
various modes is not necessary in producing turbulence 
which is contrary to the cascade theory of turbulence. There 
are a number of computer studies? of Langmuir turbulence 
induced by interacting collapsing solitary waves based on 
Zakharov's model with phenomenological damping. Per­
haps these computer results actually correspond to some 
form of chaotic solutions which are inherent in the model. 
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In this work, we have sought solutions in terms of the 
eigenfunctions of the Laplacian operator over a bounded 
spatial domain. Of course, we may expand the solutions in 
terms of any suitable countable basis for L 2(n ) and arrive at 
a countably infinite system of ordinary differential equations 
similar to that given in (S) and (6). One may also consider 
directly the Hopfbifurcation problem for Zakharov's model 
(1) and (2) without resorting to modal expansions. Some 
results in this direction have been obtained recently. They 
will be reported elsewhere. 

Finally, we note that the presence of the phenomeno­
logical damping coefficients Y m and r m in the simplified 
equations for each mode m is essential for the existence of 
chaotic solutions. But there does not exist a clearcut way of 
introducing the damping terms into the Zakharov's model 
based on physical considerations. Also, a detailed study of 
the structure of the stable and unstable manifolds associated 
with the equilibrium states is necessary for revealing the na­
ture of the chaotic oscillations described here. Unfortunate­
ly, this task is complicated by the system's dimensionality. 
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APPENDIX 

From (33), it is evident that 

det[J J(ze;Eo) - A I2(N +1) ] = A (2r + A )detP - detQ, 
(AI) 

where 

407 J. Math. Phys .. Vol. 21. No.2. February 1980 

SincedetP= [(Y+A)2 + (jl2 + ane)2]N> 0, p-I ex­
ists and is given by 

P -I = [(y + A)2 + (jl2 + ane)2] -I 

X [- (y + A )IN - (jl2 + ane)IN] . (A3) 
(jl2 + ane)IN - (y + A )IN 

Now, det Q can be computed by considering the matrix 

S = Q[ 1 ~~~] 
02n 

[ 
=~ - -: ~[V3~~ -=-~2E~fY~E~)]A_-~l 

_ aE[ I 
- I 12N . 

- (Eo +aE~) : 

Since det S = (det Q)(det P -I), det P -I = [(y + A f 
+ (jl2 + ane)2] - Nand 

(A4) 

detS = - JL2 -2 [(PE~ - JL 2EO)T]A -I [ _ (E~~ aE~)]. 
(AS) 

we have det Q = det S/det P -I. The expression (34) is ob­
tained directly from (AI) and (AS). 
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A comparison of iteration schemes for Chandrasekhar H­
equations in multigroup neutron transport 

c. T. Kelley 

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 
(Received 18 October 1978) 

An iteration scheme for the Chandrasekhar H -equations in multigroup neutron 
transport is shown to converge to the solution of physical interest. Moreover, the 
convergence is more rapid than that provided by direct iteration. 

I. INTRODUCTION 

Matrix-valued analogs of the Chandrasekhar H-func­
tion 1 that arise in multigroup neutron transport theory 2 sat­
isfy a coupled system of nonlinear integral equations. We 
write these equations in matrix form as 

(
HI (ofl'W ) 0) 

iir(fl,W) 

= (10 0) (HlJ-L,W) 
I + flw 0 

In Eq. (1), I is the n X n identity matrix, - denotes 
transpose, If/ is a matrix-valued function of v with integrable, 
nonnegative entries, and w is a complex parameter. n X n 
matrix-valued functions, HI and H r , are sought. 

If A r and A I are n X n matrices and A is the 2n X 2n 
matrix given by 

A= (~I (2) 

we define A '" by 

A'" = (A r ~). o AI 
(3) 

If we let E denote the 2n X 2n identity matrix and, as in Refs. 
3-6, define 2n X 2n matrices Hand D by 

H= (~I ;J,(D= ~ ~), (4) 

we may write Eq. (1) in the more compact form, 

H (fl,w) = E + flwH (fl,W) D (v)H "'( v,w) _v_ (5) Ll d 

a fl+v 

Ifwe let L denote the linear integral operator in Eq. (5), we 
may write 

H(w) = E + wH(w)LH"'(w). (6) 

Equation (6) has multiple solutions, only one of which 
is of physical interest. We denote this solution by H (fl,w). H 
is the only solution ofEq. (6) that is analytic in w near w = O. 

If we make the normalization 

II t If/(v)dvll =!, Jo sp 
(7) 

where 11·llsp denotes spectral radius, thenH (fl,w) is analytic 
in w for I w I < 1 and continuous in fl and w for O<;'f.l';;;' 1 and 
Iwl <;, 1. 

Of interest here is solvability ofEq. (6) by iteration. We 
consider two interation schemes. The first is direct iteration: 

Ho = E, Hn = E + wHn _ ILH '" n _ I' n> 1. (8) 

The iteration scheme given by Eq. (8) has been studied exten­
sively. 5-11 The main result 6 is that Hn (fl,w) converges to 
H (fl,w) uniformly in fl and w for O<;'fl';;; 1 and Iw 1<;, 1. 

The second scheme is direct iteration of the following 
equation, which is equivalent to Eq. (6): 

H(w) = [E-wLH"'(w)] -I. (9) 

The iteration scheme is 
Ko = E, Kn = (E - wLK '" n _ \) - 1 (10) 

In Ref. 7 the author showed that in the scalar case Kn 
coverges to H. Bowden 12 has also considered this question. 
In this paper we show not only that Kn coverges to H but 
also that the convergence of K n to H is more rapid than that 
of H n to H. Before stating our main result, we define a norm 
as follows. If A is a 2n X 2n matrix-valued function of fl for 
O';;;fl<;' 1, define 

IIA II = max IAij(u)I· 
1~jJ<,2n 

O~ll~ 1 

We prove the following theorem: 

(11) 

Theorem 1: Kn ((l,w) converges toH (,u,w) uniformly in 
fl and w for O';;;fl<;' I and Iwl';;; 1. Moreover, for all c, O';;;c<;, I, 
and n>O, 

maxliH (w) - Kn(w)ll.;;; maxIIH(w) - Hn(w)1I (12) 
1<,,1« I'''I''-c 

As will become clear, the proof of Theorem 1 general­
izes directly to the more general case of operator-valued H­
functions as described in Ref. 3-5 and 13. 

II. PROOF OF THE THEOREM 

For Iwl.;;; 1 we may write 

H(,u,w) = f wmpm(,u), 
m=O 

(13) 
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Hn(/-L,OJ) = f OJmQm,i/-L)· (14) 
m=O 

In Eq. (14), Qm,n = 0 if m > 2 n, and Qm,n = Pm ifO<m<n. 
For matrices A andB, we sayA>BifAij>Bijfor all iandj. We 
have, as in Ref. 5, that O<Qm,n<Qm,n + 1 <Pm for all m and n. 

Now for IOJI sufficiently small, we may write 

Kn(/-L,OJ) = f OJmRm,n(OJ). (15) 
m=O 

We require the following lemma: 
Lemma 1: For all m,n>O we have 

O<Qm,n<Rm,n<P m' (16) 

Assuming the lemma for the present, we may now 
prove Theorem 1. Note that an immediate consequence of 
Lemma 1 is that Kn exists for IOJI < 1. 

Lemma 1 implies that the power series cofficients of H­
Kn and H-Hn are matrix-valued functions of/-L with nonne­
gative entries. Hence, for O<e< 1 

maxllH (OJ) - Hn(OJ)11 = IIH (e) - Hie)11 (17) 
[w[,c 

and 

maxIIH(OJ) - Kn(OJ)11 = IIH(e) - Kie)lI· (18) 
[w[..;,c 

As Qm,n<Rm,n we must have, for O<e< 1, 

O<H (e) - Kn(e)<H (e) - Hie). (19) 

Hence IIH(e) - Kie) II <IIH(e) - Hn(e)ll· This fact, togeth­
er with Eqs. (17) and (18) implies inequality (12). As 
H n (/-L,OJ) converges 6 to H (/-L,OJ) uniformly in /-L and OJ for 
o </-L < 1 and IOJ I < 1, the proof of Theorem 1 is complete. 

It remains only to prove Lemma 1. Using Eqs. (6), (8), 
and (10), we derive the relations 

P = m L P,J.P*" m>l, 
k+'=m-I 

Qm,n = L Qk.n - ILQ *"n - I' 
k+'=m-I 

(20) 

m>l, (21) 

R m.n = L Rk.~R \n _ I' m> 1. (22) 
k+'=m-I 

We proceed by induction on m and n. Note that, for all 
n, Po = QO,n = Ro,n = E. Also, for all m, P m>Qm,o 
= Rm,o>O. Hence inequality (16) holds for all m ifn = Oand 
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for m = 0 for any value of n. Now assume that inequality 
(16) holds for all m if n <N and for m <M if n = N + 1. We 
will be done if we show that this implies that inequality (16) 
holds for n = N + 1 and m = M + 1. 

Equation (21), the induction hypothesis, and the fact 
that, for all m and n, Qm,n<Qm,n + 1 imply that 

< L Rk,N+ ,LR *"N' 
k+'=M 

(23) 

From Eqs. (20), (22) and the induction hypothesis we 
obtain 

RM+ I,N+I L Rk,N+ ILR *"N 
k+'=M 

< L P,J.P*,=PM+ 1• (24) 
k+'=M 

Inequalities (23) and (24) together imply 
QM+ I,N+ I<R M+ I,N+ I<PM+ I' This completes the proof. 
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